精英家教网 > 高中数学 > 题目详情
设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,2是an+2 和an的等比中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明++…+<1;
(Ⅲ)设集合M={m|m=2k,k∈Z,且1000≤k<1500},若存在m∈M,使对满足n>m 的一切正整数n,不等式2Sn-4200>恒成立,求这样的正整数m共有多少个?
【答案】分析:(Ⅰ)由4,且an>0. td 当n=1时,4+2a1,解得a1=2.当n≥2时,有4Sn-1=.于是4.故(an+an-1)(an-an-1)=2(an+an-1).由此能证明数列{an}是首项为2,公差为2的等差数列,且an=2n.
(Ⅱ)因为an=2n,则,由此能够证明++…+<1.
(Ⅲ)由,得2n(n+1)-4200>2n2,所以n>2100.故M={2000,2002,…,2008,2010,2012,…,2998}.由此能够求出集合M中满足条件的正整数m的个数.
解答:解:(Ⅰ)由已知,4,且an>0. …(1分)
当n=1时,4+2a1,解得a1=2.    …(2分)
当n≥2时,有4Sn-1=
于是4Sn-4Sn-1=
即4
于是
即(an+an-1)(an-an-1)=2(an+an-1).
因为an+an-1>0,
所以an-an-1=2,n≥2.
故数列{an}是首项为2,公差为2的等差数列,且an=2n.…(4分)
(Ⅱ)证明:因为an=2n,
,…(5分)
所以=(1-)+()+…+(
=1-.…(7分)
(Ⅲ)由
得2n(n+1)-4200>2n2,所以n>2100.  …(9分)
由题设,M={2000,2002,…,2008,2010,2012,…,2998}.
因为m∈M,所以m=2100,2102,…,2998均满足条件.…(10分)
且这些数组成首项为2100,公差为2的等差数列.
设这个等差数列共有k项,
则2100+2(k-1)=2998,解得k=450.
故集合M中满足条件的正整数m共有450个. …(12分)
点评:本题考查等差数列的证明,数列通项公式的求法,证明证明++…+<1和求集合中元素的个数.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,且对任意n∈N+,都有a13+a23+a33+…+an3=Sn2,其中Sn为数列{an}的前n项和.
(Ⅰ)求证:an2=2Sn-an
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设bn=3n+(-1)n-1λ•2an(λ为非零整数,n∈N*)试确定λ的值,使得对任意n∈N*,都有bn+1>bn成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项都是正数,Sn是其前n项和,且对任意n∈N*都有an2=2Sn-an
(1)求数列{an}的通项公式;
(2)若bn=(2n+1)2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正实数,bn=log2an,若数列{bn}满足b2=0,bn+1=bn+log2p,其中p为正常数,且p≠1.
(1)求数列{an}的通项公式;
(2)是否存在正整数M,使得当n>M时,a1•a4•a7•…•a3n-2>a16恒成立?若存在,求出使结论成立的p的取值范围和相应的M的最小值;若不存在,请说明理由;
(3)若p=2,设数列{cn}对任意的n∈N*,都有c1bn+c2bn-1+c3bn-2+…+cnb1=-2n成立,问数列{cn}是不是等比数列?若是,请求出其通项公式;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的各项均为正数,它的前n项和为Sn,点(an,Sn)在函数y=
1
8
x2+
1
2
x+
1
2
的图象上,数列{bn}的通项公式为bn=
an+1
an
+
an
an+1
,其前n项和为Tn
(1)求an;   
(2)求证:Tn-2n<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•江苏一模)设数列{an}的各项均为正数,其前n项的和为Sn,对于任意正整数m,n,Sm+n=
2a2m(1+S2n)
-1
恒成立.
(1)若a1=1,求a2,a3,a4及数列{an}的通项公式;
(2)若a4=a2(a1+a2+1),求证:数列{an}成等比数列.

查看答案和解析>>

同步练习册答案