精英家教网 > 高中数学 > 题目详情
如图所示,△ABC为直角三角形,CA=
3
,BC=1,P为△ABC内一点,满足∠BPC=90°,∠APC=150°,求tan∠PCA.
考点:两角和与差的正切函数
专题:计算题,解三角形
分析:设∠PCA=α,在Rt△PBC中,可得PC=sinα,在△PAC中,由正弦定理得
AC
sin∠APC
=
PC
sin∠PAC
,即
3
sin150°
=
sinα
sin(30°-α)
,化简即可求出.
解答: 解:设∠PCA=α,在Rt△PBC中,PC=BCcos(90°-α)=sinα,
在△PAC中,由正弦定理得
AC
sin∠APC
=
PC
sin∠PAC

3
sin150°
=
sinα
sin(30°-α)

化为
3
cosα=4sinα,
可得tanα=
3
4
点评:本题主要考查了正弦定理的应用,熟练掌握直角三角形的边角关系、正弦定理和余弦定理的应用是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(α)=
sin(
π
2
-α)sin(-α)tan(π-α)
tam(-α)sin(π-α)

(1)化简f(α);
(2)若α为第三象限角,且cos(
2
-α)=
1
5
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

试求关于x的方程x2-ax+1=0,x2+(a-1)x+16=0,x2-2ax+3a+1=0中至少一个方程有实根的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}满足:a1+a3=10,a2a4=4,且公比q∈(0,1)
(1)求数列{an}的通项公式;
(2)若数列前n项和Sn=
63
4
,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

点(1,2)与圆
x=-1+3cosθ
y=3sinθ
,的位置关系是(  )
A、点在圆内B、点在圆外
C、点在圆上D、与θ的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为(  )
A、2
2
B、
6
C、2
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

如程序框图,当输出的y=3时,则输入的x的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为sn,满足点(n,sn)在函数f(x)=x2-8x图象上,{bn}为等比数列,且b1=a5,b2+a3=-1
(1)求数列{an}和{bn}的通项公式;
(2)设cn=anbn,求数列的前项n和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点(0,4)和(3,0),则直线l的斜截式方程为
 

查看答案和解析>>

同步练习册答案