分析 由$\overrightarrow{{A}_{1}C}$=$\overrightarrow{{A}_{1}A}+\overrightarrow{AB}+\overrightarrow{BC}$,利用向量法能求出A1C的长.
解答 解:在平行六面体ABCD-A1B1C1D1中,底面是边长为2的正方形,
$∠{A_1}AB=∠{A_1}AD={60^0}$,且A1A=3,
$\overrightarrow{{A}_{1}C}$=$\overrightarrow{{A}_{1}A}+\overrightarrow{AB}+\overrightarrow{BC}$,
∴$\overrightarrow{{A}_{1}C}$2=${\overrightarrow{{A}_{1}A}}^{2}$+${\overrightarrow{AB}}^{2}$+${\overrightarrow{BC}}^{2}$+2$\overrightarrow{{A}_{1}A}•\overrightarrow{AB}$+2$\overrightarrow{{A}_{1}A}•\overrightarrow{BC}$
=9+4+4+2×3×2×cos120°+2×3×2×cos60°=17,
∴A1C的长为$\sqrt{17}$.
故答案为:$\sqrt{17}$.
点评 本题考查线段长的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
单位 | A1 | A2 | A3 | A4 | A5 |
平均身高x(单位:cm) | 170 | 174 | 176 | 181 | 179 |
平均得分y | 62 | 64 | 66 | 70 | 68 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $[{-1,\frac{1}{2}}]$ | B. | [-1,2] | C. | $[{\frac{1}{2},2}]$ | D. | $[{\frac{1}{2},1}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com