精英家教网 > 高中数学 > 题目详情

【题目】某地区对12岁儿童瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力。某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果。例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人。

视觉

听觉

视觉记忆能力

偏低

中等

偏高

超常

听觉

记忆

能力

偏低

0

7

5

1

中等

1

8

3

b

偏高

2

a

0

1

超常

0

2

1

1

由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为

(1)试确定a,b的值;

(2)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为X,求随机变量X的分布列。

【答案】(1)a=6b=2;(2)见解析

【解析】

1)由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有(10+a)人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A,事件A的概率即为,由此建立方程即可求出ab

2)从40人中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξξ的可能取值为0123,分别求出其概率列出分布列.

1)由表格数据可知,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生共有(10+a)人。记视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A

PA=,解得a=6,从而b=40-(32+a=4038=2

2)由于从40位学生中任意抽取3位的结果数为

其中具有听觉记忆能力或视觉记忆能力偏高或超常的学生共24人,

40位学生中任意抽取3位,其中恰有k位具有听觉记忆能力或视觉记忆能力偏高或超常的结果数为

所以从40位学生中任意抽取3位,其中恰有k位具有听觉记忆能力或视觉记忆能力偏高或超常的概率为PX=k=k=0123)。X的可能取值为0123

因为PX=0=PX=1=

PX=2=PX=3=

所以X的分布列为

X

0

1

2

3

P

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形中, 于点 ,且.沿折起到的位置,使

)求证: 平面

)求三棱柱的体积.

)线段上是否存在点,使得平面.若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】探究与发现:为什么二次函数的图象是抛物线?我们知道,平面内与一个定点F和一条定直线l距离相等的点的轨迹是抛物线,这是抛物线的定义,也是其本质特征因此,只要说明二次函数的图象符合抛物线的本质特征,就解决了为什么二次函数的图象是抛物线的问题进一步讲,由抛物线与其方程之间的关系可知,如果能用适当的方式将转化为抛物线标准方程的形式,那么就可以判定二次函数的图象是抛物线了.下面我们就按照这个思路来展开.对二次函数式的右边配方,得.由函数图象平移一般地,设是坐标平面内的一个图形,将上所有点按照同一方向,移动同样的长度,得到图形,这一过程叫作图形的平移的知识可以知道,沿向量平移函数的图象如图,函数图象的形状、大小不发生任何变化,平移后图象对应的函数解析式为,我们把它改写为的形式方程,这是顶点为坐标原点,焦点为的抛物线.这样就说明了二次函数的图象是一条抛物线.

请根据以上阅读材料,回答下列问题:

由函数的图象沿向量平移,得到的图象对应的函数解析式为,求的坐标;

过抛物线的焦点F的一条直线交抛物线于P、Q两点若线段PF与QF的长分别是p、q,试探究是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子里装有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同

从盒子中随机取出2个球,求取出的2个球颜色相同的概率.

从盒子中随机取出4个球,其中红球个数分别记为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,曲线在点处的切线与直线垂直.

(1)求的值;

(2)若对于任意的恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,四边形ABCD为平行四边形,∠ABD=90°,EB⊥平面ABCD,EF∥AB,AB=2,EB=,EF=1,BC=,且M是BD的中点。

(1)求证:EM∥平面ADF;

(2)求二面角D-AF-B的余弦值;

(3)在线段ED上是否存在一点P,使得BP∥平面ADF?若存在,求出EP的长度;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)确定函数在定义域上的单调性;

(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正方体ABCDA1B1C1D1棱长为4,点在棱上,点在棱上,且.在侧面内以为一个顶点作边长为1的正方形,侧面内动点满足到平面距离等于线段长的倍,则当点运动时,三棱锥的体积的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在区间上的两个函数,如果对任意的,均有不等式成立,则称函数上是友好的,否则称为不友好的.

1)若,则在区间上是否友好

2)现在有两个函数,给定区间

①若在区间上都有意义,求的取值范围;

②讨论函数与在区间上是否友好

查看答案和解析>>

同步练习册答案