精英家教网 > 高中数学 > 题目详情
4.给出下列函数:①y=log2x;  ②y=x2; ③y=2|x|   ④$y=\frac{2}{x}$.其中图象关于y轴对称的是(  )
A.①②B.②③C.①③D.②④

分析 根据函数奇偶性的定义进行判断即可.

解答 解:①y=log2x的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数;
②y=x2;是偶函数,图象关于y轴对称,满足条件.
③y=2|x|是偶函数,图象关于y轴对称,满足条件.
④$y=\frac{2}{x}$是奇函数,图象关于y轴不对称,不满足条件,
故选:B.

点评 本题主要考查函数奇偶性的判断,利用函数奇偶性的定义和性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数f(x)=ex-1+4x-4的零点所在区间为(  )
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=b+logax(a>0且a≠1)的图象经过点(4,1)和(1,-1)
(1)求函数f(x)的解析式;
(2)令g(x)=2f(x+1)-f(x),求g(x)的最小值及取最小值时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设f(x)=$\left\{\begin{array}{l}{\frac{{x}^{3}}{3},x≤1}\\{{x}^{2},x>1}\end{array}\right.$,函数f(x)在x=1不连续(连续或不连续).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如果平面直角坐标系中的两点A(a-1,a+1),B(a,a)关于直线L对称,那么直线L的
方程为x-y+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<2π)在一个周期内的部分对应值如下表:
x$-\frac{π}{2}$0$\frac{π}{6}$$\frac{π}{2}$
f(x)-11$\frac{1}{2}$-1
(Ⅰ)求f(x)的解析式;
(Ⅱ)求函数g(x)=f(x)+2sinx的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.用0,1,2,3,4,5这6个数字.
(1)能组成多少个物重复数的四位偶数?
(2)能组成多少个奇数数字互不相邻的六位数(无重复数字)?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在正方体ABCD-A′B′C′D′中,求向量$\overrightarrow{AC}$分别与向量$\overrightarrow{A′B′}$,$\overrightarrow{B′A′}$,$\overrightarrow{AD′}$,$\overrightarrow{CD′}$,$\overrightarrow{B′D′}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+2≥0}\\{2x-y-5≤0}\\{x+y-4≥0}\end{array}\right.$,则z=|x+2y-4|的最大值为(  )
A.21B.20C.25D.23

查看答案和解析>>

同步练习册答案