精英家教网 > 高中数学 > 题目详情
f(x)=
2x2x+1
,g(x)=ax+5-2a(a>0).
(1)求f(x)在x∈[0,1]上的值域;
(2)若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
分析:(1)求f(x)的值域问题可用导数法;注意到分母为x2,可分子分母同除以x2,将分母变为关于
1
x
的二次函数解决;
还可以将分母换元,转化为用双钩函数求最值.
(2)对于任意x1∈[0,1],f(x1)范围由(1)可知,由题意即g(x)的值域包含f(x)的值域,转化为集合的关系问题.
解答:解:(1)法一:(导数法)f′(x)=
4x(x+1)-2x2
(x+1)2
=
2x2+4x
 (x+1)2 
≥0
在x∈[0,1]上恒成立.
∴f(x)在[0,1]上增,
∴f(x)值域[0,1].
法二:f(x)=
0          x=0
2
1
x
+
1
x2
x∈(0,1]
,用复合函数求值域.
法三:f(x)=
2x2
x+1
=2(x+1)+
2
x+1
-4

用双勾函数求值域.
(2)f(x)值域[0,1],g(x)=ax+5-2a(a>0)在x∈[0,1]上的值域[5-2a,5-a].
由条件,只须[0,1]⊆[5-2a,5-a].
5-2a≤0
5-a≥1
?
5
2
≤a≤4
点评:本题考查函数的值域问题,任意性和存在性命题问题,考查对题目的理解和转化能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则实数a的取值范围是(  )
A、[
5
2
,4]
B、[-
1
2
,2]
C、[1,4]
D、[
1
2
5
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则a的取值范围是(  )
A、[
5
2
,4]
B、[4,+∞)
C、(0,
5
2
]
D、[
5
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0),若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则a的取值范围是
5
2
≤a≤4
5
2
≤a≤4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

f(x)=
2x2
x+1
,g(x)=ax+5-2a(a>0)
,若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,则a的取值范围是(  )
A.[
5
2
,4]
B.[4,+∞)C.(0,
5
2
]
D.[
5
2
,+∞)

查看答案和解析>>

同步练习册答案