精英家教网 > 高中数学 > 题目详情

(本小题满分16分)已知函数f(x)=ax2-(2a+1)x+2lnx(a为正数).

(1) 若曲线yf(x)在x=1和x=3处的切线互相平行,求a的值;

(2) 求f(x)的单调区间;

(3) 设g(x)=x2-2x,若对任意的x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求实数a的取值范围.

f′(x)=ax-(2a+1)+(x>0).

(1) f′(1)=f′(3),解得a=.(4分)

(2) f′(x)=(x>0).

①当0<a<时,>2,

在区间(0,2)和上,f′(x)>0;

在区间上,f′(x)<0,

f(x)的单调递增区间是(0,2)和,单调递减区间是.(6分)

②当a=时,f′(x)=≥0,故f(x)的单调递增区间是(0,+∞).(8分)

③当a>时,0<<2,在区间和(2,+∞)上,f′(x)>0;在区间上,f′(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.(10分)

(3) 由已知,在(0,2]上有f(x)maxg(x)max.(11分)

由已知,g(x)max=0,由(2)可知,

①当0<a≤时,f(x)在(0,2]上单调递增,

f(x)maxf(2)=2a-2(2a+1)+2ln2

=-2a-2+2ln2,

∴-2a-2+2ln2<0,解得a>ln2-1,ln2-1<0,故0<a≤.(13分)

②当a>时,f(x)在]上单调递增,在]上单调递减,

f(x)maxf=-2--2lna.

a>可知lna>ln>ln=-1,2lna>-2,-2lna<2,

∴-2-2lna<0,f(x)max<0,(15分)

综上所述,a>0.(16分)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010江苏卷)18、(本小题满分16分)

在平面直角坐标系中,如图,已知椭圆的左、右顶点为A、B,右焦点为F。设过点T()的直线TA、TB与椭圆分别交于点M,其中m>0,

(1)设动点P满足,求点P的轨迹;

(2)设,求点T的坐标;

(3)设,求证:直线MN必过x轴上的一定点(其坐标与m无关)。

查看答案和解析>>

科目:高中数学 来源:2010年泰州中学高一下学期期末测试数学 题型:解答题

(本小题满分16分)
函数(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,对任意时,恒成立,求实数的范围;
(Ⅲ)如果,当“对任意恒成立”与“内必有解”同时成立时,求 的最大值.

查看答案和解析>>

科目:高中数学 来源:2014届江苏大丰新丰中学高二上期中考试文数学试卷(解析版) 题型:解答题

(本小题满分16分)     本题请注意换算单位

某开发商用9000万元在市区购买一块土地建一幢写字楼,规划要求写字楼每层建筑面积为2000平方米。已知该写字楼第一层的建筑费用为每平方米4000元,从第二层开始,每一层的建筑费用比其下面一层每平方米增加100元。

(1)若该写字楼共x层,总开发费用为y万元,求函数y=f(x)的表达式;

(总开发费用=总建筑费用+购地费用)

(2)要使整幢写字楼每平方米开发费用最低,该写字楼应建为多少层?

 

查看答案和解析>>

科目:高中数学 来源:2013届安徽省蚌埠市高二下学期期中联考文科数学试卷(解析版) 题型:解答题

(本小题满分16分)设命题:方程无实数根; 命题:函数

的值域是.如果命题为真命题,为假命题,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高一第三阶段检测数学卷 题型:解答题

(本小题满分16分)

已知函数f(x)=为偶函数,且函数yf(x)图象的两相邻对称轴间的距离为

(Ⅰ)求f)的值;

(Ⅱ)将函数yf(x)的图象向右平移个单位后,再将得到的图象上各点的横坐标延长到原来的4倍,纵坐标不变,得到函数yg(x)的图象,求g(x)的单调递减区间.

 

查看答案和解析>>

同步练习册答案