精英家教网 > 高中数学 > 题目详情
如图,为圆的直径,点在圆上,,矩形所在的平面和圆所在的平面互相垂直,且.

(1)求证:平面
(2)设的中点为,求证:平面
(3)设平面将几何体分成的两个锥体的体积分别为,求
(1)平面平面,,平面为圆的直径,平面(2)设的中点为,则,又,则为平行四边形平面(3)

试题分析:(1)证明: 平面平面,,

平面平面=平面
平面 ,   2分
为圆的直径,
平面。          4分
(2)设的中点为,则,又
为平行四边形,            6分
,又平面平面
平面。                                 9分
(3)过点平面平面
平面,       10分
平面
,     12分
.                                14分
点评:根据椎体的体积公式,求体积比主要是找到底面积和高的关系,判定线面垂直要判定直线垂直于平面内的两条相交直线,判定线面平行可转化为面外直线平行于面内直线或由两面平行得其中一面内直线平行于另外一面
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,正方体的棱长为1,的中点,为线段上的动点,过点的平面截该正方体所得的截面记为,则下列命题正确的是         (写出所有正确命题的编号).

①当时,为四边形
②当时,为等腰梯形
③当时,的交点满足
④当时,为六边形
⑤当时,的面积为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在多面体中,四边形是正方形,,二面角是直二面角

(1)求证:平面
(2)求证:平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED为正方形,且所在平面垂直于平面ABC.

(Ⅰ)证明:平面ADE∥平面BCF;
(Ⅱ)求二面角D-AE-F的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

关于两条不同的直线,与两个不同的平面,,下列正确的是(     )
A.,则
B.,则
C.,则
D.,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜三棱柱,侧面与底面垂直,∠,且.

(1)试判断与平面是否垂直,并说明理由;
(2)求侧面与底面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,已知正方形和矩形所在的平面互相垂直, 是线段的中点。

(1)证明:∥平面
(2)求异面直线所成的角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图甲,设正方形的边长为,点分别在上,并且满足
,如图乙,将直角梯形沿折到的位置,使点
平面上的射影恰好在上.

(1)证明:平面
(2)求平面与平面所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用平行于棱锥底面的平面去截棱锥,则截面与底面之间的部分叫棱台。
如图,在四棱台中,下底是边长为的正方形,上底是边长为1的正方形,侧棱⊥平面.

(Ⅰ)求证:平面
(Ⅱ)求平面与平面夹角的余弦值.

查看答案和解析>>

同步练习册答案