精英家教网 > 高中数学 > 题目详情
8.我们可以将1拆分如下:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,以此类推,可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{20}$+$\frac{1}{n}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中m,n∈N*,且m<n,则满足C${\;}_{t}^{m}$=C${\;}_{t}^{n}$的正整数t的值为43.

分析 根据已知将分母进行拆分,根据裂项法,求出m,n的值,代入足C${\;}_{t}^{m}$=C${\;}_{t}^{n}$,根据排列组合的性质可求得t的值.

解答 解:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{20}$+$\frac{1}{n}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,
∵2=1×2,
6=2×3,
30=5×6,
42=6×7,
56=7×8,
72=8×9,
90=9×10,
110=10×11,
132=11×12,
1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{m}$+$\frac{1}{20}$+$\frac{1}{n}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$=(1-$\frac{1}{4}$)+$\frac{1}{m}$+$\frac{1}{20}$+$\frac{1}{n}$+($\frac{1}{6}$-$\frac{1}{12}$)+$\frac{1}{156}$,
$\frac{1}{m}$+$\frac{1}{n}$=$\frac{m+n}{mn}$=$\frac{43}{390}$,
中m,n∈N*,且m<n,
解得m=13,n=30,
C${\;}_{t}^{m}$=C${\;}_{t}^{n}$,
∴m+n=t,
∴t=43,
故答案为:43.

点评 本题考查的知识点是归纳推理,排列组合的运算性质,其中根据已知求出m,n值是解答的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.学校达标运动会后,为了解学生的体质情况,从中抽取了部分学生的成绩,得到一个容量为n的样本,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出了如图的频率分布直方图,已知[50,60)与[90,100]两组的频数分别为24与6.
(1)求n及频率分布直方图中的x,y的值;
(2)估计本次达标运动会中,学生成绩的中位数和平均数;
(3)已知[90,100]组中有2名男生,4名女生,为掌握性别与学生体质的关系,从本组中选2名作进一步调查,求2名学生中至少有1名男生的频率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,一个几何体的三视图是三个直角三角形,则该几何体的最长的棱长等于(  )
A.2$\sqrt{2}$B.3C.3$\sqrt{3}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知空间几何体的三视图如图所示,则该几何体的表面积是28+8π;几何体的体积是12+4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知f(x)=|x-a|-a,a∈R
(1)当a=-2时,解不等式:f(x)<-$\frac{1}{2}$x+2;
(2)若f(x)的图象与x轴围成的图形的面积为9,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知一个几何体的三视图如图所示,正视图和侧视图是两个的全等的等腰梯形,梯形上底、下底分别为2,4,腰长为$\sqrt{10}$,则该几何体的体积为(  )
A.$\frac{28}{3}$$\sqrt{10}$-3πB.28-2πC.28-3πD.$\frac{28}{3}$$\sqrt{10}$-2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若某空间几何体的三视图如图所示,根据图中数据,可得该几何体的表面积是(  )
A.2$\sqrt{2}$B.2+$\sqrt{2}$C.2+2$\sqrt{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=x5+2x3-x+3,且f(2)=7,求f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.用系统抽样的方法从个体数为1003的总体中抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的概率为(  )
A.$\frac{1}{1000}$B.$\frac{1}{1003}$C.$\frac{50}{1000}$D.$\frac{50}{1003}$

查看答案和解析>>

同步练习册答案