精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,侧面PAD是等边三角形,且平面平面ABCD.

1AD上是否存在一点M,使得平面平面ABCD;若存在,请证明,若不存在,请说明理由;

2)若的面积为,求四棱锥的体积.

【答案】(1) 存在一点M中点,使得平面平面ABCD,证明见详解;(2).

【解析】

1)取中点为,根据平面,由线面垂直推证面面垂直即可;

2)根据的面积求得各棱长度,即可由体积公式求得结果.

1)存在点中点,使得平面平面ABCD,证明如下:

中点为,连接,如下图所示:

因为为等边三角形,中点,

故可得

又因为平面平面ABCD,且交线为

又因为平面

故可得平面,又平面

故可得平面平面,即证.

2)不妨设

故可得

由(1)可知为直角三角形,

故可得

中,因为

,则

故可得其面积

解得

故可得

又由(1)可知,平面

.

故四棱锥的体积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,有一种赛车跑道类似梨形曲线,由圆弧和线段ABCD四部分组成,在极坐标系Ox中,A2),B1),C1),D2),弧所在圆的圆心分别是(00),(20),曲线M1是弧,曲线M2是弧

1)分别写出M1M2的极坐标方程:

2)点EF位于曲线M2上,且,求△EOF面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥PABCD中,ABCDABBCABBC1PACD2PA⊥底面ABCDEPB.

1)证明:ACPD

2)若PE2BE,求三棱锥PACE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为提高服务质量,随机调查了60名男顾客和80名女顾客,每位顾客均对该商场的服务给出满意或不满意的评价,得到下面不完整的列联表:

满意

不满意

合计

男顾客

50

女顾客

50

合计

1)根据已知条件将列联表补充完整;

2)能否有的把握认为男、女顾客对该商场服务的评价有差异?

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大型公司为了切实保障员工的健康安全,贯彻好卫生防疫工作的相关要求,决定在全公司范围内举行一次乙肝普查.为此需要抽验669人的血样进行化验,由于人数较多,检疫部门制定了下列两种可供选择的方案.

方案一:将每个人的血分别化验,这时需要验669.

方案二:按个人一组进行随机分组,把从每组个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这个人的血就只需检验一次(这时认为每个人的血化验次);否则,若呈阳性,则需对这个人的血样再分别进行一次化验,这时该组个人的血总共需要化验.

假设此次普查中每个人的血样化验呈阳性的概率为,且这些人之间的试验反应相互独立.

1)设方案二中,某组个人中每个人的血化验次数为,求的分布列.

2)设,试比较方案二中,分别取234时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案一,化验次数最多可以平均减少多少次?(最后结果四舍五入保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标平面中,ABC的两个顶点AB的坐标分别为A(﹣10),B 10),平面内两点GM同时满足下列条件:(1;(2;(3,则ABC的顶点C的轨迹方程为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点Pxy)满足|x1|+|ya|1O为坐标原点,若的最大值的取值范围为,则实数a的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为椭圆的左、右焦点,为该椭圆的一条垂直于轴的动弦,直线轴交于点,直线与直线的交点为.

1)证明:点恒在椭圆.

2)设直线与椭圆只有一个公共点,直线与直线相交于点,在平面内是否存在定点,使得恒成立?若存在,求出该点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E,过右焦点F的直线l与椭圆E交于AB两点(AB两点不在x轴上),椭圆EAB两点处的切线交于P,点P在定直线.

1)记点,求过点与椭圆E相切的直线方程;

2)以为直径的圆过点F,求面积的最小值.

查看答案和解析>>

同步练习册答案