精英家教网 > 高中数学 > 题目详情
若函数y=f(x)在R上可导,且满足不等式xf′(x)>-f(x)恒成立,且常数a,b满足a>b,则下列不等式一定成立的是           (  )
A.af(b)>bf(a)B.af(a)>bf(b)
C.af(a)<bf(b)D.af(b)<bf(a)
B
令F(x)=xf(x),
则F′(x)=xf′(x)+f(x),由xf′(x)>-f(x),
得xf′(x)+f(x)>0,
即F′(x)>0,
所以F(x)在R上为递增函数.
因为a>b,所以af(a)>bf(b).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求函数的极小值;
(2)求函数的递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求函数单调区间;
(2)若函数在区间[1,2]上的最小值为,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中.
(1)若,求函数的极值;
(2)当时,试确定函数的单调区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.若曲线在点处的切线与直线垂直,
(1)求实数的值;
(2)求函数的单调区间;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ln x-
(1)当a>0时,判断f(x)在定义域上的单调性;
(2)f(x)在[1,e]上的最小值为,求实数a的值;
(3)试求实数a的取值范围,使得在区间(1,+∞)上函数y=x2的图象恒在函数y=f(x)图象的上方.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数满足且当 时,,则(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)若函数上为减函数,求实数的最小值;
(2)若存在,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=x2㏑x的单调递减区间为(    )
A.(1,1]B.(0,1]C.[1,+∞)D.(0,+∞)

查看答案和解析>>

同步练习册答案