精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),且函数的最小正周期为

(Ⅰ)求a的值;

(Ⅱ)求f(x)在[0,]上的最大值和最小值.

【答案】(Ⅰ) ;(Ⅱ) 最大值为3,最小值为

【解析】试题分析:

()化简三角函数的解析式,利用最小正周期公式可得

()利用(I)中函数的解析式得到函数的单调性,由单调性可得函数的最大值为3,最小值为

试题解析:

函数f(x)=2sin(ax﹣)cos(ax﹣)+2cos2(ax﹣)(a>0),

化简可得:f(x)=sin(2ax﹣)+cos(2ax﹣)+1

=cos2ax+sin2ax+1

=2sin(2ax+)+1

∵函数的最小正周期为.即T=

由T=,可得a=2.

∴a的值为2.

故f(x)=2sin(4x+)+1;

(Ⅱ)x[0,]时,4x+[0,].

当4x+=时,函数f(x)取得最小值为=1

当4x+=时,函数f(x)取得最大值为2×1+1=3

∴f(x)在[0,]上的最大值为3,最小值为1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【2017陕西渭南二模】若函数的图象上存在两个点关于原点对称,则对称点的“孪生点对”,点对可看作同一个“孪生点对”,若函数恰好有两个“孪生点对”,则实数的值为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,,存在非零实数,使得向量,且.问是否存在最小值?若存在,求其最小值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:
①函数y=|x|与函数y=( 2表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,4];
④设函数f(x)是在区间[a,b]上图象连续的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根;
其中正确命题的序号是(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】理科竞赛小组有9名女生、12名男生,从中随机抽取一个容量为7的样本进行分析.

(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)

(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:

学生序号

1

2

3

4

5

6

7

物理成绩

65

70

75

81

85

87

93

化学成绩

72

68

80

85

90

86

91

规定85分以上(包括85份)为优秀,从这7名同学中再抽取3名同学,记这3名同学中物理和化学成绩均为优秀的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】使函数y=xα的定义域为R且为奇函数的α的值为(
A.﹣1
B.0
C.
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log4(4x+1)+kx,(k∈R)为偶函数.
(1)求k的值;
(2)若方程f(x)=log4(a2x﹣a)有且只有一个根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,A={x|x2+px+12=0},B={x|x2﹣5x+q=0},若(UA)∩B={2},A∩(UB)={4},求A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(Ⅰ)求椭圆C的方程;

(Ⅱ)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

查看答案和解析>>

同步练习册答案