精英家教网 > 高中数学 > 题目详情
10.设集合A={-1,1,3},B={a+2,4},A∩B={3},则实数a=1.

分析 由A,B,以及两集合的交集,确定出实数a的值即可.

解答 解:∵A={-1,1,3},B={a+2,4},且A∩B={3},
∴a+2=3,
解得:a=1,
故答案为:1

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.小明和小刚正在做掷骰子游戏,两人各掷一枚骰子,当两枚骰子点数之和为奇数时,小刚得1分,否则小明得1分.这个游戏公平吗?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若向量$\overrightarrow a,\overrightarrow b满足|{\overrightarrow a}|=1,|{\overrightarrow b}|≤1,且以向量\overrightarrow a,\overrightarrow b为邻边的平行四边形的面积是\frac{1}{2}$,则$\overrightarrow a与\overrightarrow b的夹角θ的取值范围是$[30°,150°]或[$\frac{π}{6}$,$\frac{5π}{6}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知{an}为公差不为零的等差数列,首项a1=a,{an}的部分项${a_{k_1}}$、${a_{k_2}}$、…、${a_{k_n}}$恰为等比数列,且k1=1,k2=5,k3=17.
(1)求数列{an}的通项公式an(用a表示);
(2)设数列{kn}的前n项和为Sn,求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若等边△ABC的边长为$2\sqrt{3}$,平面内一点M满足$\overrightarrow{CM}=\frac{1}{3}\overrightarrow{CB}+\frac{1}{3}\overrightarrow{CA}$,则$\overrightarrow{MA}•\overrightarrow{MB}$等于(  )
A.$2\sqrt{3}$B.$-2\sqrt{3}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若四边形ABCD满足$\overrightarrow{AB}•\overrightarrow{BC}<0$,$\overrightarrow{CD}•\overrightarrow{DA}<0$,$\overrightarrow{BC}•\overrightarrow{CD}<0$,$\overrightarrow{DA}$$•\overrightarrow{AB}$<0,则该四边形为(  )
A.空间四边形B.任意的四边形C.梯形D.平行四边形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设奇函数f(x)在区间[-7,-3]上是减函数且最大值为-5,函数g(x)=$\frac{ax+1}{x+2}$,其中a<$\frac{1}{2}$.
(1)判断并用定义法证明函数g(x)在(-2,+∞)上的单调性;
(2)求函数F(x)=f(x)+g(x)在区间[3,7]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=2x2-lnx在其定义域内的一个子区间[k-1,k+1]内不是单调函数,则实数k的取值范围是(  )
A.[1,2)B.(1,2)C.$[{1,\frac{3}{2}})$D.$({1,\frac{3}{2}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若不等式${x^2}-{log_m}^x<0(m>0$且m≠1)在(0,$\frac{1}{2}$)内恒成立,求实数 m 的取值范围(  )
A.(0,$\frac{1}{4}$)B.[$\frac{1}{4}$,1)C.($\frac{1}{16}$,1)D.[$\frac{1}{16}$,1)

查看答案和解析>>

同步练习册答案