精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥,侧面是边长为的正三角形,且与底面垂直,底面的菱形, 的中点.

(1)求证:

(2)求点到平面 的距离.

【答案】()详见解析(

【解析】试题分析:(1)由题可得为等边三角形,中点,可得,可证得平面,可得结论;(2)利用体积相等,可将点到面的距离转化为体积相等问题.

试题解析:(1)证法一:取中点,连结

依题意可知均为正三角形,

所以,又

所以平面,又平面

所以

证法二:连结,依题意可知均为正三角形,

的中点,所以

所以平面

平面,所以

2)点到平面的距离即点到平面的距离,

由(1)可知,又平面平面

平面平面?平面

所以平面,即为三棱锥的体高在中,

中, ,边上的高

所以的面积,设点到平面的距离为

所以,解得

所以点到平面的距离为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目.根据预测,甲、乙项目可能的最大盈利率分别为100%50%,可能的最大亏损分别为30%10%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

上一个年度未发生有责任道路交通事故

下浮10%

上两个年度未发生有责任道路交通事故

下浮20%

上三个及以上年度未发生有责任道路交通事故

下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:

(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)

(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:

①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;

②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与圆C:相交于A,B两点,弦AB中点为M(0,1),

(1)求实数的取值范围以及直线的方程;

(2)若圆C上存在四个点到直线的距离为,求实数a的取值范围;

(3)已知N(0,3),若圆C上存在两个不同的点P,使,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设函数

1)若函数的图象关于直线对称,且时,求函数的单调增区间;

2)在(1)的条件下,当时,函数有且只有一个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

.

(1)求

处的切线方程;

(2)令

,求

的单调区间;

(3)若任意

,都有

恒成立,求实数

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:

(1)根据条件完成下列

列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?

愿意

不愿意

总计

男生

女生

总计

(2)水上挑战项目共有两关,主办方规定:挑战过程依次进行,每一关都有两次机会挑战,通过第一关后才有资格参与第二关的挑战,若甲参加每一关的每一次挑战通过的概率均为

,记甲通过的关数为

,求

的分布列和数学期望.

参考公式与数据:

0.1

0.05

0.025

0.01

2.706

3.841

5.024

6.635

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】医用放射性物质原来质量a每年衰减的百分比相同,衰减一半时,所用时间是10年,根据需要,放射性物质至少要保留原来的,否则需要更换.已知到今年为止,剩余为原来的

(1)求每年衰减的百分比;

(2)到今年为止,该放射性物质衰减了多少年?

(3)今后至多还能用多少年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆上每一点的纵坐标不变,横坐标变为原来的,得曲线C.

)写出C的参数方程;

)设直线l C的交点为P1P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1 P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

同步练习册答案