分析 设f(x)=x2+(a2-9)x+a2-5a+6,则由题意可得$\left\{\begin{array}{l}{f(0){=a}^{2}-5a+6<0}\\{f(2)={3a}^{2}-5a-8<0}\end{array}\right.$,由此求得a的范围.
解答 解:设f(x)=x2+(a2-9)x+a2-5a+6,则由题意可得$\left\{\begin{array}{l}{f(0){=a}^{2}-5a+6<0}\\{f(2)={3a}^{2}-5a-8<0}\end{array}\right.$,
求得 2<a<$\frac{8}{3}$.
点评 本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,体现了转化的数学思想,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | [-$\frac{5}{3}$,$\frac{5}{2}$] | B. | (-∞,-$\frac{5}{3}$]∪[$\frac{5}{2}$,+∞) | C. | (-∞,-$\frac{5}{2}$]∪[$\frac{5}{3}$,+∞) | D. | [-$\frac{5}{2}$,$\frac{5}{3}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,+∞) | B. | (-∞,0) | C. | (0,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com