精英家教网 > 高中数学 > 题目详情
设直线与抛物线C:,p为常数)交于不同两点A、B,点D为抛物线准线上的一点。
(I)若t=0,且三角形ABD的面积为4,求抛物线的方程;
(II)当△ABD为正三角形时,求出点D的坐标。
解:(I)直线过焦点时,
不妨设,则,
又D点到直线l的距离d=p  所以=4∴p=2
∴抛物线的方程为  
(II)设    
  
从而
∴线段AB的中点为   
由DM⊥AB得,即
解得从而  


得到=
  
此时,点  
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分15分)已知m是非零实数,抛物线(p>0)

的焦点F在直线上。

(I)若m=2,求抛物线C的方程

(II)设直线与抛物线C交于A、B,△A,△的重心分别为G,H

求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外。

查看答案和解析>>

科目:高中数学 来源:2014届浙江省高二上学期期末考试理科数学试卷(解析版) 题型:解答题

如图,已知抛物线上横坐标为4的点到焦点的距离为5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设直线与抛物线C交于两点,且(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连结AD、BD得到

(i)求实数a,b,k满足的等量关系;

(ii)的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省河西五市高三第一次联考数学理卷 题型:解答题

(本小题共12分)

已知抛物线C:上横坐标为4的点到焦点的距离为5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设直线与抛物线C交于两点,且,且为常数).过弦AB的中点M作平行于轴的直线交抛物线于点D,连结AD、BD得到

(1)求证:

(2)求证:的面积为定值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省河西五市高三第一次联考数学理卷 题型:解答题

(本小题共12分)

已知抛物线C:上横坐标为4的点到焦点的距离为5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设直线与抛物线C交于两点,且,且为常数).过弦AB的中点M作平行于轴的直线交抛物线于点D,连结AD、BD得到

(1)求证:

(2)求证:的面积为定值.

 

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(浙江卷)解析版(文) 题型:解答题

 [番茄花园1] 已知m是非零实数,抛物线(p>0)

的焦点F在直线上。

(I)若m=2,求抛物线C的方程

(II)设直线与抛物线C交于A、B,△A,△的重心分别为G,H

求证:对任意非零实数m,抛物线C的准线与x轴的焦点在以线段GH为直径的圆外。

 


 [番茄花园1]1.

查看答案和解析>>

同步练习册答案