精英家教网 > 高中数学 > 题目详情
5.在△ABC中,若△ABC的面积为$2\sqrt{3}$,$B=\frac{π}{3}$,则$\overrightarrow{AB}•\overrightarrow{BC}$=(  )
A.4B.-4C.2D.-2

分析 根据三角形的面积公式与平面向量的数量积公式,即可求出正确的结果.

解答 解:△ABC的面积为$2\sqrt{3}$,$B=\frac{π}{3}$,
所以$\frac{1}{2}$acsinB=$\frac{1}{2}$ac×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$ac=2$\sqrt{3}$,
所以ac=8;
所以$\overrightarrow{AB}•\overrightarrow{BC}$=|$\overrightarrow{AB}$|×|$\overrightarrow{BC}$|cos(π-B)
=ca•(-cosB)
=8×(-$\frac{1}{2}$)
=-4.
故选:B.

点评 本题考查了三角形的面积公式与数量积的运算问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知角α终边上有一点P(x,1),且cosα=-$\frac{1}{2}$,则tanα=-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.将一个样本容量为50的数据分组,各组的频数如下:[17,19],1;(19,21],1;(21,23],3;(23,25],3;(25,27],18;(27,29],10;(29,31],8;(31,33],6.根据样本频率分布,估计小于或等于31的数据大约占总体的(  )
A.88%B.42%C.40%D.16%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图四棱锥P-ABCD,四边形ABCD是正方形,O是正方形的中心,E是PC的中点,且PA=AB=PB.
(1)求证:PA∥平面BDE;
(2)求EO与AB所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.以下四个关于圆锥曲线的命题:
①在直角坐标平面内,到点(-1,2)和到直线2x+3y-4=0距离相等的点的轨迹是抛物线;
②设F1、F2为两个定点,k为非零常数,若|$\overrightarrow{P{F}_{1}}$|-|$\overrightarrow{P{F}_{2}}$|=k,则P点的轨迹为双曲线;
③方程4x2-8x+3=0的两根可以分别作为椭圆和双曲线的离心率;
④过单位圆O上一定点A作圆的动弦AB,O为坐标原点,若$\overrightarrow{OP}$=($\overrightarrow{OA}$+$\overrightarrow{OB}$),则动点P的轨迹为椭圆.
其中真命题的序号为③.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若指数函数f(x)=(3m-1)x在R上是减函数,则实数m的取值范围是(  )
A.m>0且m≠1B.m≠$\frac{1}{3}$C.m>$\frac{1}{3}$且m≠$\frac{2}{3}$D.$\frac{1}{3}$<m<$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若f(x)=lnx+2x+x${\;}^{\frac{1}{2}}$-1,则不等式f(x)>f(2x-4)的解集为(  )
A.(-∞,4)B.(0,4)C.(2,4)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$) 的最小正周期为π,将该函数的图象向左平移$\frac{π}{6}$个单位后,得到的图象对应的函数为奇函数,则函数f(x)的图象(  )
A.关于点($\frac{π}{12}$,0)对称B.关于直线x=$\frac{π}{12}$对称
C.关于点($\frac{5}{12}$π,0)对称D.关于直线x=$\frac{5}{12}$π对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数$f(x)=\left\{{\begin{array}{l}{(3a-1)x+4a,x<1}\\{{a^x},x≥1}\end{array}}\right.$是R上的减函数,那么a的取值范围是$[\frac{1}{6},\frac{1}{3})$.

查看答案和解析>>

同步练习册答案