精英家教网 > 高中数学 > 题目详情

【题目】已知点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2 , l1⊥l2 , 线段AF的垂直平分线与l2交于点P.
(Ⅰ)求点P的轨迹C的方程;
(Ⅱ)若点M,N是直线l1上两个不同的点,且△PMN的内切圆方程为x2+y2=1,直线PF的斜率为k,求 的取值范围.

【答案】解:(Ⅰ)∵点F(1,0),点A是直线l1:x=﹣1上的动点,过A作直线l2 , l1⊥l2 , 线段AF的垂直平分线与l2交于点P, ∴点P到点F(1,0)的距离等于它到直线l1的距离,
∴点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,
∴曲线C的方程为y2=4x.
(Ⅱ)设P(x0 , y0),点M(﹣1,m),点N(﹣1,n),
直线PM的方程为:y﹣m= (x+1),
化简,得(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,
∵△PMN的内切圆的方程为x2+y2=1,
∴圆心(0,0)到直线PM的距离为1,即 =1,
=
由题意得x0>1,∴上式化简,得(x0﹣1)m2+2y0m﹣(x0+1)=0,
同理,有
∴m,n是关于t的方程(x0﹣1)t2+2y t﹣(x0+1)=0的两根,
∴m+n= ,mn=
∴|MN|=|m﹣n|= =
,|y0|=2
∴|MN|= =2
直线PF的斜率 ,则k=| |=
= =
∵函数y=x﹣ 在(1,+∞)上单调递增,


∴0<
的取值范围是(0,
【解析】(Ⅰ)点P到点F(1,0)的距离等于它到直线l1的距离,从而点P的轨迹是以点F为焦点,直线l1:x=﹣1为准线的抛物线,由此能求出曲线C的方程.(Ⅱ)设P(x0 , y0),点M(﹣1,m),点N(﹣1,n),直线PM的方程为(y0﹣m)x﹣(x0+1)y+(y0﹣m)+m(x0+1)=0,△PMN的内切圆的方程为x2+y2=1,圆心(0,0)到直线PM的距离为1,由x0>1,得(x0﹣1)m2+2y0m﹣(x0+1)=0,同理, ,由此利用韦达定理、弦长公式、直线斜率,结合已知条件能求出 的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中,角A,B,C的对边分别是且满足

(1)求角B的大小;

(2)若的面积为为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,如果运行结果为720,那么判断框中应填入(
A.k<6?
B.k<7?
C.k>6?
D.k>7?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1的极值

2证明 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2为f(x)的极值点,求实数a的值;
(2)若y=f(x)在[3,+∞)上为增函数,求实数a的取值范围;
(3)当a=﹣ 时,方程f(1﹣x)= 有实根,求实数b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三名音乐爱好者参加某电视台举办的演唱技能海选活动,在本次海选中有合格和不合格两个等级.若海选合格记1分,海选不合格记0分.假设甲、乙、丙海选合格的概率分别为,他们海选合格与不合格是相互独立的.

1)求在这次海选中,这三名音乐爱好者至少有一名海选合格的概率;

2)记在这次海选中,甲、乙、丙三名音乐爱好者所得分之和为随机变量,求随机变量的分布列和数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项等比数列的前项和为,首项,且,正项数列满足.

(1)求数列的通项公式;

(2)记,是否存在正整数,使得对任意正整数恒成立?若存在,求正整数的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校为了对教师教学水平和教师管理水平进行评价,从该校学生中选出300人进行统计.其中对教师教学水平给出好评的学生人数为总数的,对教师管理水平给出好评的学生人数为总数的,其中对教师教学水平和教师管理水平都给出好评的有120人.

(1)填写教师教学水平和教师管理水平评价的列联表:

对教师管理水平好评

对教师管理水平不满意

合计

对教师教学水平好评

对教师教学水平不满意

合计

请问是否可以在犯错误概率不超过0.001的前提下,认为教师教学水平好评与教师管理水平好评有关?

(2)若将频率视为概率,有4人参与了此次评价,设对教师教学水平和教师管理水平全好评的人数为随机变量.

①求对教师教学水平和教师管理水平全好评的人数的分布列(概率用组合数算式表示);

②求的数学期望和方差.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校在本校任选了一个班级,对全班50名学生进行了作业量的调查,根据调查结果统计后,得到如下的列联表,已知在这50人中随机抽取2人,这2人都“认为作业量大”的概率为.

认为作业量大

认为作业量不大

合计

男生

18

女生

17

合计

50

(Ⅰ)请完成上面的列联表;

(Ⅱ)根据列联表的数据,能否有的把握认为“认为作业量大”与“性别”有关?

(Ⅲ)若视频率为概率,在全校随机抽取4人,其中“认为作业量大”的人数记为,求的分布列及数学期望.

附表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

附:

查看答案和解析>>

同步练习册答案