分析 由勾股定理得PC⊥CD,从而PC⊥平面ABCD连接BD,AC,交于点O,再连接OE,则OE∥PC,从而OE⊥平面ABCD,由此能证明平面EDB⊥平面ABCD.
解答 证明:∵四棱锥P-ABCD的底面是边长为a的菱形,PC=a,PD=$\sqrt{2}$a,
∴PC2+CD2=PD2,
由勾股定理得PC⊥CD,
又∵平面 PCD⊥平面ABCD,PC∈平面PCD,且平面PCD∩平面ABCD=CD,
∴PC⊥平面ABCD
连接BD,AC,交于点O,再连接OE,
则OE∥PC,
又∵PC⊥平面ABCD,
∴OE⊥平面ABCD,
∵OE∈平面EDB,
∴平面EDB⊥平面ABCD.
点评 本题考查线面平行的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2kπ-$\frac{3π}{4}$<x<2kπ+$\frac{π}{4}$,k∈Z | B. | 2kπ+$\frac{π}{4}$<x<2k$π+\frac{5π}{4}$,k∈Z | ||
C. | k$π-\frac{π}{4}$<x<k$π+\frac{π}{4}$,k∈Z | D. | k$π+\frac{π}{4}$<x<k$π+\frac{3π}{4}$,k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com