精英家教网 > 高中数学 > 题目详情
已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线
x2
a
-y2=1
的左顶点为A,若双曲线的一条渐近线与直线AM平行,则实数a的值是(  )
A、
1
25
B、
1
9
C、
1
5
D、
1
3
分析:根据抛物线的定义,可得点M到抛物线的准线x=-
p
2
的距离也为5,即即|1+
p
2
|=5,解可得p=8,可得抛物线的方程,进而可得M的坐标;根据双曲线的性质,可得A的坐标与其渐近线的方程,根据题意,双曲线的一条渐近线与直线AM平行,可得
4
1+
a
=
1
a
,解可得a的值,即可得答案.
解答:解:根据题意,抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,则点M到抛物线的准线x=-
p
2
的距离也为5,
即|1+
p
2
|=5,解可得p=8;即抛物线的方程为y2=16x,
易得m2=2×8=16,则m=4,即M的坐标为(1,4)
双曲线
x2
a
-y2=1
的左顶点为A,则a>0,且A的坐标为(-
a
,0),
其渐近线方程为y=±
1
a
x;
而KAM=
4
1+
a

又由若双曲线的一条渐近线与直线AM平行,则有
4
1+
a
=
1
a

解可得a=
1
9

故选B.
点评:本题综合考查双曲线与抛物线的性质,难度一般;需要牢记双曲线的渐近线方程、定点坐标等.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.
(1)求a的取值范围;
(2)若线段AB的垂直平分线交x轴于点N,求△NAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0)的焦点为F,准线为l.
(1)求抛物线上任意一点Q到定点N(2p,0)的最近距离;
(2)过点F作一直线与抛物线相交于A,B两点,并在准线l上任取一点M,当M不在x轴上时,证明:
kMA+kMBkMF
是一个定值,并求出这个值.(其中kMA,kMB,kMF分别表示直线MA,MB,MF的斜率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0).过动点M(a,0)且斜率为1的直线l与该抛物线交于不同的两点A、B,|AB|≤2p.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城一模)已知抛物线y2=2px(p>0),过点M(2p,0)的直线与抛物线相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),M(2p,0),A、B是抛物线上的两点.求证:直线AB经过点M的充要条件是OA⊥OB,其中O是坐标原点.

查看答案和解析>>

同步练习册答案