【题目】下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程必过();
④在一个2×2列联中,由计算得则有99%的把握确认这两个变量间有关系;
` 其中错误的个数是 ( )
本题可以参考独立性检验临界值表:
0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.25 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.535 | 7.879 | 10.828 |
A.0B.1C.2D.3
科目:高中数学 来源: 题型:
【题目】某蔬菜加工厂加工一种蔬菜,并对该蔬菜产品进行质量评级,现对甲、乙两台机器所加工的蔬菜产品随机抽取一部分进行评级,结果(单位:件)如表1:
(1)若规定等级为合格等级,等级为优良等级,能否有的把握认为“蔬菜产品加工质量与机器有关”?
(2)表2是用清水千克清洗该蔬菜千克后,该蔬菜上残留的农药微克的统计表,若用解析式作为与的回归方程,求出与的回归方程.(结果精确到)(参考数据:,,,.)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学为了丰富学生的课外文体活动,分别开设了阅读、书法、绘画等文化活动;跑步、游泳、健身操等体育活动.该中学共有高一学生300名,要求每位学生必须选择参加其中一项活动,现对高一学生的性别、学习积极性及选择参加的文体活动情况进行统计,得到数据如下:
(1)在选择参加体育活动的学生中按性别分层抽取6名,再从这6名学生中抽取2人了解家庭情况,求2人中至少有1名女生的概率;
(2)是否有99.9%的把握认为学生的学习积极性与选择参加文化活动有关?请说明你的理由.
附:参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线: 的左、右焦点分别为, 为坐标原点, 是双曲线上在第一象限内的点,直线分别交双曲线左、右支于另一点, ,且,则双曲线的离心率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】王府井百货分店今年春节期间,消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对春节前7天参加抽奖活动的人数进行统计,表示第天参加抽奖活动的人数,得到统计表格如下:
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5 | 8 | 8 | 10 | 14 | 15 | 17 |
经过进一步统计分析,发现与具有线性相关关系.
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)若该活动只持续10天,估计共有多少名顾客参加抽奖.
参与公式:,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年1月10日,引发新冠肺炎疫情的病毒基因序列公布后,科学家们便开始了病毒疫苗的研究过程.但是类似这种病毒疫苗的研制需要科学的流程,不是一朝一夕能完成的,其中有一步就是做动物试验.已知一个科研团队用小白鼠做接种试验,检测接种疫苗后是否出现抗体.试验设计是:每天接种一次,3天为一个接种周期.已知小白鼠接种后当天出现抗体的概率为,假设每次接种后当天是否出现抗体与上次接种无关.
(1)求一个接种周期内出现抗体次数的分布列;
(2)已知每天接种一次花费100元,现有以下两种试验方案:
①若在一个接种周期内连续2次出现抗体即终止本周期试验,进行下一接种周期,试验持续三个接种周期,设此种试验方式的花费为元;
②若在一个接种周期内出现2次或3次抗体,该周期结束后终止试验,已知试验至多持续三个接种周期,设此种试验方式的花费为元.本着节约成本的原则,选择哪种实验方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若直线l的极坐标方程为,曲线C的参数方程为(为参数).
若曲线上存在M,N两点关于直线l对称,求实数m的值;
若直线与曲线相交于P,Q两点,且,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济的发展,个人收入的提高,自2019年1月1日起,个人所得税起征点和税率的调整.调整如下:纳税人的工资、薪金所得,以每月全部收入额减除5000元后的余额为应纳税所得额.依照个人所得税税率表,调整前后的计算方法如下表:
个人所得税税率表(调整前) | 个人所得税税率表(调整后) | ||||
免征额3500元 | 免征额5000元 | ||||
级数 | 全月应纳税所得额 | 税率(%) | 级数 | 全月应纳税所得额 | 税率(%) |
1 | 不超过1500元部分 | 3 | 1 | 不超过3000元部分 | 3 |
2 | 超过1500元至4500元的部分 | 10 | 2 | 超过3000元至12000元的部分 | 10 |
3 | 超过4500元至9000元的部分 | 20 | 3 | 超过12000元至25000元的部分 | 20 |
... | ... | ... | ... | ... | ... |
(1)假如小红某月的工资、薪金等所得税前收入总和不高于8000元,记表示总收入,表示应纳的税,试写出调整前后关于的函数表达式;
(2)某税务部门在小红所在公司利用分层抽样方法抽取某月100个不同层次员工的税前收入,并制成下面的频数分布表:
收入(元) | ||||||
人数 | 30 | 40 | 10 | 8 | 7 | 5 |
先从收入在及的人群中按分层抽样抽取7人,再从中选2人作为新纳税法知识宣讲员,求两个宣讲员不全是同一收入人群的概率;
(3)小红该月的工资、薪金等税前收入为7500元时,请你帮小红算一下调整后小红的实际收入比调整前增加了多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com