精英家教网 > 高中数学 > 题目详情
对定义在区间上的函数,若存在闭区间和常数,使得对任意的,都有,且对任意的都有恒成立,则称函数为区间上的“型”函数.
(1)求证:函数上的“型”函数;
(2)设是(1)中的“型”函数,若不等式对一切的恒成立,求实数的取值范围;
(3)若函数是区间上的“型”函数,求实数的值.
(1)详见解析;(2);(3)

试题分析:(1)根据题意可将函数中的绝对值去掉可得一个分段函数,可作出函数的图象,不难发现当时,;当时,,由此可易得证; (2)由(1)中的函数不难求出函数的最小值,这们即可将问题转化为求恒成立,这是一个关于的含有绝对值的不等式,去掉绝对值可得,然后采用先分开后合并的方法求出此不等式的解集; (3)根据题中“型”函数的定义,则可假设存在闭区间和常数,使得对任意的,都有,这样即可得到一个恒等式,即对任意恒成立,则对应系数分别相等,即可求出对应的,注意要回代检验一下,判断其余的是否均大于这个最小值.
试题解析:(1)当时,;当时,
∴ 存在闭区间和常数符合条件.                        4分
(2)对一切的恒成立,
,                        6分
解得 .                                                    10分
(3)存在闭区间和常数,使得对任意的
都有,即
对任意恒成立
                              12分
① 当时,
时,
,即时,
由题意知,符合条件;                                     14分
②当时,  
不符合要求;                                          16分
综上,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数的图象过点(2,0).
⑴求m的值;
⑵证明的奇偶性;
⑶判断上的单调性,并给予证明;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当时,车流速度是车流密度x的一次函数.
(1)当时,求函数的表达式;
(2)当车流密度为多大时,车流量(单位时间内通过桥上某观点的车辆数,单位:辆/每小时)可以达到最大,并求出最大值(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已函数是定义在上的奇函数,在上时
(Ⅰ)求函数的解析式;
(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在上的函数,如果对任意,恒有)成立,则称阶缩放函数.
(1)已知函数为二阶缩放函数,且当时,,求的值;
(2)已知函数为二阶缩放函数,且当时,,求证:函数上无零点;
(3)已知函数阶缩放函数,且当时,的取值范围是,求)上的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是定义域为的单调减函数,且是奇函数,当时,
(1)求的解析式;(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

上的奇函数.
(Ⅰ)求的值;
(Ⅱ)证明:上为增函数;
(Ⅲ)解不等式:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数的最小值为,且关于的一元二次不等式的解集为
(Ⅰ)求函数的解析式;
(Ⅱ)设其中,求函数时的最大值
(Ⅲ)若为实数),对任意,总存在使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是定义在上的偶函数,且在上单调递增,则满足 的实数的范围是         

查看答案和解析>>

同步练习册答案