精英家教网 > 高中数学 > 题目详情

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

【答案】C

【解析】

事件A即为表中包含数字01的组,根据表中数据,即可求解

事件A包含“瓷”“都”两字,即包含数字0和1,随机产生的18组数中,包含0,1的组有021,001,130,031,103,共5组,故所求概率为,故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从高二年级学生中随机抽取60名学生,将期中考试的政治成绩(均为整数)分成六段:后得到如下频率分布直方图.

1)根据频率分布直方图,分别求,众数,中位数。

2)估计该校高二年级学生期中考试政治成绩的平均分。

3)用分层抽样的方法在各分数段的学生中抽取一个容量为20的样本,则在分数段抽取的人数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二文科分四个班,各班人数恰好成等差数列,高二数学调研测试后,对四个文科班的学生试卷按每班人数进行分层抽样,对测试成绩进行统计,人数最少的班抽取了人,抽取的所有学生成绩分为组:,得到如图所示的频率分布直方图,其中第六组分数段的人数为人.

)求的值,并求出各班抽取的学生数各为多少人?

)在抽取的学生中,任取一名学生,求分数不小于分的概率(视频率为概率).

)估计高二文科四个班数学成绩的平均分

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.
(1)求B.
(2)若sinAsinC= ,求C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C: =1(a>0,b>0)的左、右焦点分别为F1 , F2 , 离心率为3,直线y=2与C的两个交点间的距离为
(1)求a,b;
(2)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,D为边BC上一点,AD=6,BD=3, DC=2.

(1)若AD⊥BC,求∠BAC的大小;
(2)若∠ABC= ,求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分12分)袋中装有黑色球和白色球共7个,从中任取2个球都是白色球的概率为.现有甲、乙两人从袋中轮流摸出1个球,甲先摸,乙后摸,然后甲再摸,……,摸后均不放回,直到有一人摸到白色球后终止.每个球在每一次被摸出的机会都是等可能的,用X表示摸球终止时所需摸球的次数.

(1)求随机变量X的分布列和均值E(X);

(2)求甲摸到白色球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,已知

(1)求证:

(2)若A的值.

查看答案和解析>>

同步练习册答案