精英家教网 > 高中数学 > 题目详情

【题目】如图,是平行四边形,的中点,且有,现以为折痕,将折起,使得点到达点的位置,且

1)证明:平面

2)若四棱锥的体积为,求四棱锥的侧面积.

【答案】(1)详见解析;(2).

【解析】

1)先推导出,利用线面垂直的判定定理能证明平面;(2)由四棱锥的体积为求出,由,可得平,推导出,分别求出4个侧面的面积即可求出四棱锥的侧面积.

1)在中,

∴∠PEC=90°,即PEEC

PEAE,∴PE⊥面ABCE

2)由(1)得PE⊥面ABCE

VP-ABCE=

AE=1,∴PEAB,又ABAE

AB⊥面PAE,∴ABPA,∴PA=

由题意得BC=PC=PB=

PBC中,由余弦定理得

∴∠PCB=120°

∴四棱锥P-ABCE的侧面积

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(x﹣φ),且 f(x)dx=0,则函数f(x)的图象的一条对称轴是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

【答案】(1) ;(2)见解析

【解析】试题分析:1)求出函数的导数,得到关于 的方程组,解出即可;

(2)由(1)可知

,可得,令, 利用导数研究其单调性可得

从而证明.

试题解析:((1)由题意,所以

,所以

,则,与矛盾,故 .

(2)由(1)可知

,可得

时, 单调递减,且

时, 单调递增;且

所以上当单调递减,在上单调递增,且

.

【点睛本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.

型】解答
束】
22

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来4年中,至多有1年的年入流量超过120的概率;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:

年入流量X

40<X<80

80≤X≤120

X>120

发电机最多可运行台数

1

2

3

若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】不等式组 的解集记为D,有下列四个命题:
p1(x,y)∈D,x+2y≥﹣2 p2(x,y)∈D,x+2y≥2
p3(x,y)∈D,x+2y≤3 p4(x,y)∈D,x+2y≤﹣1
其中真命题是(
A.p2 , p3
B.p1 , p4
C.p1 , p2
D.p1 , p3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点p(1,m)在抛物线上,F为焦点,且.

(1)求抛物线C的方程;

(2)过点T(4,0)的直线交抛物线CA,B两点,O为坐标原点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 满足Sn=2nan+1﹣3n2﹣4n,n∈N* , 且S3=15.
(1)求a1 , a2 , a3的值;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】7个人排成一排,按下列要求各有多少种排法?

其中甲不站排头,乙不站排尾;

其中甲、乙、丙3人两两不相邻;

其中甲、乙中间有且只有1人;

其中甲、乙、丙按从左到右的顺序排列.

查看答案和解析>>

同步练习册答案