【题目】已知二次函数f(x)满足f(x+1)-f(x)=-2x+1,且f(2)=15.
(1)求函数f(x)的解析式;
(2) 令g(x)=(2-2m)x-f(x).
① 若函数g(x)在x∈[0,2]上是单调函数,求实数m的取值范围;
② 求函数g(x)在x∈[0,2]上的最小值.
【答案】(1)f(x)=-x2+2x+15.(2)①m≤0或m≥2. ②见解析
【解析】试题分析:(1)设二次函数一般式f(x)=ax2+bx+c(a≠0),代入条件化简,根据恒等条件得2a=-2,a+b=1,解得a=-1,b=2.再根据f(2)=15,求c(2)①根据二次函数对称轴必在定义区间外得实数m的取值范围;②根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法.
试题解析:解:(1) 设二次函数f(x)=ax2+bx+c(a≠0),
则f(x+1)-f(x)=a(x+1)2+b(x+1)+c-(ax2+bx+c)=2ax+a+b=-2x+1,
∴ 2a=-2,a+b=1,∴ a=-1,b=2.
又f(2)=15,∴ c=15.
∴ f(x)=-x2+2x+15.
(2) ① ∵ f(x)=-x2+2x+15,
∴ g(x)=(2-2m)x-f(x)=x2-2mx-15.
又g(x)在x∈[0,2]上是单调函数,∴ 对称轴x=m在区间[0,2]的左侧或右侧,∴ m≤0或m≥2.
② g(x)=x2-2mx-15,x∈[0,2],对称轴x=m,
当m>2时,g(x)min=g(2)=4-4m-15=-4m-11;
当m<0时,g(x)min=g(0)=-15;
当0≤m≤2时,g(x)min=g(m)=m2-2m2-15=-m2-15.
综上所述,g(x)min=
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知AD=4, ,AB=2CD=8.
(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;
(2)当M点位于线段PC什么位置时,PA∥平面MBD?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】3名志愿者在10月1号至10月5号期间参加社区服务工作.
(1)若每名志愿者在这5天中任选一天参加社区服务工作,且各志愿者的选择互不影响,求3名志愿者恰好连续3天参加社区服务工作的概率;
(2)若每名志愿者在这5天中任选两天参加社区服务工作,且各志愿者的选择互不影响,记表示这3名志愿者在10月1号参加社区服务工作的人数,求随机变量的分布列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校100名学生其中考试语文成绩的频率分布直方图所示,其中成绩分组区间是:
.
(1)求图中的值;
(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;
(3)若这100名学生语文某些分数段的人数与数学成绩相应分数段的人数之比如下表所示,
求数学成绩在之外的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,以为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)已知点,和平面内一点(),过点任作直线与椭圆相交于,两点,设直线,,的斜率分别为,,,,试求,满足的关系式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com