精英家教网 > 高中数学 > 题目详情
若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0所截得的弦长为4,则
1
a
+
1
b
的最小值为(  )
A、
1
4
B、
1
2
C、2
D、4
分析:先求圆的圆心和半径,求弦心距,用弦心距、半径、半弦长的关系得到a、b 关系,来求
1
a
+
1
b
的最小值.
解答:解:圆x2+y2+2x-4y+1=0的圆心坐标(-1,2),半径是2,弦长是4,所以直线2ax-by+2=0(a>0,b>0)过圆心,
即:-2a-2b+2=0,∴a+b=1,将它代入
1
a
+
1
b
得,
a+b
a
+
a+b
b
=2+
b
a
+
a
b
≥4
(因为a>0,b>0当且仅当a=b时等号成立).
故选D.
点评:分析中用的是一般方法,解答中比较特殊,解题灵活,本题是一个好题目,学生容易受挫.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则
1
a
+
2
b
的最小值是(  )
A、4
2
B、3+2
3
C、3+2
2
D、4
2
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线2ax-by+2=0(a>0,b>0)恰好平分圆x2+y2+2x-4y+1=0的面积,则
1
a
+
1
b
的最小值(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线2ax-by+2=0.(a>0,b>0)被圆(x+1)2+(y-2)2=4截得的弦长为4,则
1
a
+
1
b
的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线2ax-by+2=0始终平分圆
x=-1+2cosθ
y=2+2sinθ
(0≤θ<2π)的周长,则a•b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•宁德模拟)若直线2ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0截得的弦长为4,则ab的最大值是(  )

查看答案和解析>>

同步练习册答案