精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点.那么,正方体的过P、Q、R的截面图形是    
【答案】分析:延长QP,CB交于N,连接RN,交BB1于S.作RT∥PQ,交C1D1于M.延长PQ,CD交于T,连接TM,交DD1于N.那么PQNMRS即为所求截面.
解答:解:延长QP,CB交于N,连接RN,交BB1于S.
作RT∥PQ,交C1D1于M.延长PQ,CD交于T,连接TM,交DD1于N.
如图所示:
正方体过P、Q、R的截面图形是六边形,
且是边长是正方体棱长的倍的正六边形.
答案:正六边形.
点评:本题主要考查公理2,公理2指出:如果两平面有一个公共点,那么有且只有一条通过这个点的公共直线.其作用:①它是判定两平面相交的方法;②它说明了两平面交线与两平面公共点之间的关系,交线必过公共点;③它是判别点在直线上,即证若干点共线的依据.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的各顶点均在半径为1的球面上,则四面体A1-ABC的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是从上下底面处在水平状态下的棱长为a的正方体ABCD-A1B1C1D1中分离出来的:
(1)试判断A1是否在平面B1CD内;(回答是与否)
(2)求异面直线B1D1与C1D所成的角;
(3)如果用图示中这样一个装置来盛水,那么最多可以盛多少体积的水.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知边长为6的正方体ABCD-A1B1C1D1,E,F为AD、CD上靠近D的三等分点,H为BB1上靠近B的三等分点,G是EF的中点.
(1)求A1H与平面EFH所成角的正弦值;
(2)设点P在线段GH上,
GP
GH
=λ,试确定λ的值,使得二面角P-C1B1-A1的余弦值为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在棱长为2cm的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作出与截面PBC1平行的截面,简单证明截面形状,并求该截面的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方体ABCD-A1B1C1D1中,M是棱AB的中点,过A1,M,C三点的平面与CD所成角正弦值(  )

查看答案和解析>>

同步练习册答案