7£®Ï±íÌṩÁËij³§½ÚÄܽµºÄ¼¼Êõ¸ÄÔìºóÉú²ú¼×²úÆ·¹ý³ÌÖмǼµÄ²úÁ¿x£¨¶Ö£©ÓëÏàÓ¦µÄÉú²úÄܺÄy£¨¶Ö±ê׼ú£©µÄ¼¸×é¶ÔÕÕÊý¾Ý£®
x3456
y2.5344.5
£¨1£©Çë¸ù¾ÝÉϱíÌṩµÄÊý¾Ý£¬ÓÃ×îС¶þ³Ë·¨Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$£»
£¨2£©ÒÑÖª¸Ã³§¼¼¸ÄÇ°Éú²ú100¶Ö¼×²úÆ·µÄÉú²úÄܺÄΪ90¶Ö±ê׼ú£®ÊÔ¸ù¾Ý£¨1£©Çó³öµÄÏßÐԻع鷽³Ì£®Ô¤²âÉú²ú100¶Ö¼×²úÆ·µÄÉú²úÄܺıȼ¼¸ÄÇ°½µµÍ¶àÉÙ¶Ö±ê׼ú£¿£¨²Î¿¼ÊýÖµ£º3¡Á2.5+4¡Á3+5¡Á4+6¡Á4.5=66.5£©
¸½£º»Ø¹é·½³Ì$\stackrel{¡Ä}{y}$=$\stackrel{¡Ä}{b}$x+$\stackrel{¡Ä}{a}$ÆäÖÐ$\stackrel{¡Ä}{b}$=$\frac{\underset{\stackrel{n}{¡Æ}}{i=1}{x}_{i}{y}_{i}-n\overline{xy}}{\underset{\stackrel{n}{¡Æ}}{i=1}{x}_{i}^{2}-n{\overline{x}}^{2}}$£¬$\stackrel{¡Ä}{a}$=$\overline{y}$=$\stackrel{¡Ä}{b}$$\overline{x}$£®

·ÖÎö £¨1£©¸ù¾ÝËù¸øµÄÕâ×éÊý¾ÝÇó³öÀûÓÃ×îС¶þ³Ë·¨ËùÐèÒªµÄ¼¸¸öÊý¾Ý£¬´úÈëÇóϵÊýbµÄ¹«Ê½£¬ÇóµÃ½á¹û£¬ÔÙ°ÑÑù±¾ÖÐÐĵã´úÈ룬Çó³öaµÄÖµ£¬µÃµ½ÏßÐԻع鷽³Ì£®
£¨2£©¸ù¾ÝÉÏÒ»ÎÊËùÇóµÄÏßÐԻع鷽³Ì£¬°Ñx=100´úÈëÏßÐԻع鷽³Ì£¬Ô¤²âÉú²ú100¶Ö¼×²úÆ·µÄÉú²úÄܺıȼ¼¸ÄÇ°½µµÍ±ê׼úµÄÊýÁ¿£®

½â´ð ½â£º£¨1£©ÓɶÔÕÕÊý¾Ý£¬¼ÆËãµÃ£º$\sum_{i=1}^{4}{{x}_{i}}^{2}$=86£¬
$\overline{x}$=$\frac{3+4+5+6}{4}$=4.5£¨¶Ö£©£¬$\overline{y}$=$\frac{2.5+3+4+4.5}{4}$=3.5£¨¶Ö£©£®
ÒÑÖª3¡Á2.5+4¡Á3+5¡Á4+6¡Á4.5=66.5£¬ËùÒÔ£¬ÓÉ×îС¶þ³Ë·¨È·¶¨µÄ»Ø¹é·½³ÌµÄϵÊýΪ£º
b=$\frac{66.5-4¡Á4.5¡Á3.5}{86-4¡Á4.52}$=0.7£¬
a=3.5-0.7¡Á4.5=0.35£®
Òò´Ë£¬ËùÇóµÄÏßÐԻع鷽³ÌΪ=0.7x+0.35£®
£¨2£©ÓÉ£¨1£©µÄ»Ø¹é·½³Ì¼°¼¼¸ÄÇ°Éú²ú100¶Ö¼×²úÆ·µÄÉú²úÄܺģ¬µÃ½µµÍµÄÉú²úÄܺÄΪ£º
90-£¨0.7¡Á100+0.35£©=19.65£¨¶Ö±ê׼ú£©£®

µãÆÀ ±¾Ì⿼²éÏßÐԻع鷽³ÌµÄÇ󷨺ÍÓ¦Ó㬱¾ÌâÊǷdz£·ûºÏпαêÖжÔÓÚÏßÐԻع鷽³ÌµÄÒªÇó£¬×¢Òâͨ¹ýÕâ¸öÌâÄ¿ÕÆÎÕÒ»ÀàÎÊÌ⣬עÒâÊý×ÖµÄÔËË㣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýy=2|x+2|£®
£¨1£©»­³ö¸Ãº¯ÊýµÄͼÏó£»
£¨2£©¸ù¾Ýº¯ÊýͼÏóÖ¸³öº¯ÊýµÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖª¹ØÓÚxµÄ¶þ´Î·½³Ìx2+2mx+2m+1=0ÓÐÁ½¸ù£¬ÆäÖÐÒ»¸ùÔÚÇø¼ä£¨-2£¬0£©ÄÚ£¬ÁíÒ»¸ùÔÚÇø¼ä£¨1£¬2£©ÄÚ£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÇóµãP£¨3£¬5£©¹ØÓÚÖ±Ïß3x+2y-6=0¶Ô³ÆµÄ¶Ô³ÆµãQµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®¹ýÅ×ÎïÏßy2=4xµÄ½¹µãFµÄÖ±ÏßÓëÅ×ÎïÏß½»ÓÚA£¨x1£¬y1£©B£¨x2£¬y2£©Á½µã£¬Èô|AB|=5£¬Ôò$\frac{1}{{x}_{1}+1}+\frac{1}{{x}_{2}+1}$µÄ×îСֵÊÇ$\frac{4}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬C£¬$\overline{m}$=£¨1+tanA£¬$\sqrt{2}$£©£¬$\overline{n}$=£¨1+tanB£¬-$\sqrt{2}$£©ÇÒÂú×ã$\overline{m}$¡Í$\overline{n}$£®
£¨1£©Çó¡ÏC£»
£¨2£©ÈôcosAcosB=$\frac{3\sqrt{2}}{5}$£¬ÇósinAsinBµÄÖµ£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Éècos£¨¦Á+A£©cos£¨¦Á+B£©=$\frac{\sqrt{2}}{5}$cos2¦Á£¬Çótan¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®»¯¼ò£º$\frac{1}{{tan£¨{{{450}¡ã}-x}£©tan£¨{{{810}¡ã}-x}£©}}•\frac{{cos£¨{{{360}¡ã}-x}£©}}{{sin£¨{-x}£©}}$=-tanx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªA={x|x2+a1x+b1=0}£¬B={x|x2+a2x+b2=0}£¬È«¼¯ÎªR£¬ÊÔÓÃA¡¢BµÄ½»¡¢²¢¡¢²¹±íʾÏÂÁз½³ÌºÍ²»µÈʽµÄ½â£®
¢Ù£¨x2+a1x+b1£©£¨x2+a2x+b2£©=0
¢Ú£¨x2+a1x+b1£©2+£¨x2+a2x+b2£©2=0
¢Ûx2+a1x+b1¡Ù0
¢Ü£¨x2+a1x+b1£©2+£¨x2+a2x+b2£©2¡Ù0
¢ÙA¡ÈB£»¢ÚA¡ÉB£»¢ÛCRA£»¢Ü£¨CRA£©¡È£¨CRB£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®º¯Êýf£¨x£©=ax-1+lg£¨3x-2£©+2ºã¹ý¶¨µã£¨1£¬3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸