精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱锥中,已知都是边长为的等边三角形,中点,且平面为线段上一动点,记

(1)当时,求异面直线所成角的余弦值;

(2)当与平面所成角的正弦值为时,求的值

【答案】(1)(2)

【解析】分析:(1)建立空间直角坐标系,设立各点坐标,根据向量数量积求向量夹角,最后根据线线角与向量夹角相等或互补得结果,(2)建立空间直角坐标系,设立各点坐标,利用方程组求平面的一个法向量,再根据向量数量积求向量夹角,最后根据线面角与向量夹角互余列等量关系,解得结果,

详解:连接CE, 以分别为轴,

建立如图空间直角坐标系,

因为F为线段AB上一动点,且

, 所以

(1)当时,

所以

(2)

设平面的一个法向量为=

, ,化简得,取

与平面所成角为

.

解得(舍去),所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】绿色出行越来越受到社会的关注,越来越多的消费者对新能源汽车感兴趣但是消费者比较关心的问题是汽车的续驶里程某研究小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程单次充电后能行驶的最大里程,被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组: ,绘制成如图所示的频率分布直方图.

求直方图中m的值;

求本次调查中续驶里程在的车辆数;

若从续驶里程在的车辆中随机抽取2辆车,求其中恰有一辆车续驶里程在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点.

(1)求以线段为邻边的平行四边形的另一顶点的坐标;

(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,已知曲线在点处的切线与直线平行

(Ⅰ)求的值;

(Ⅱ)是否存在自然数,使得方程内存在唯一的根?如果存在,求出;如果不存在,请说明理由。

(Ⅲ)设函数表示中的较小者),求的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】邗江中学高二年级某班某小组共10人,利用寒假参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中选出2人作为该组代表参加座谈会.

(1)记“选出2人参加义工活动的次数之和为4”为事件,求事件发生的概率;

(2)设为选出2人参加义工活动次数之差的绝对值,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在轴上,点是圆的上任一点,且当点的坐标为时,到直线距离最大.

(1)求直线被圆截得的弦长;

(2)已知,经过原点,且斜率为的直线与圆交于两点.

(Ⅰ)求证:为定值;

(Ⅱ)若,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P. (Ⅰ)求证:AD∥EC;
(Ⅱ)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的单调减函数是奇函数,当时,.

(Ⅰ)求的值;

(Ⅱ)求的解析式;

(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点

的值;

的平分线交线段AB于点D,求点D的坐标;

在单位圆上是否存在点C,使得?若存在,请求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案