精英家教网 > 高中数学 > 题目详情
(12)已知,且,则的值是          .

答案:-

解析:∵sinθ+cosθ=,∴sinθcosθ=-.

∴(cosθ-sinθ)2=(sinθ+cosθ)2-4sinθcosθ=.

θ,∴cosθ-sinθ<0.

∴cosθ-sinθ=-.

∴cos2θ=(cosθ+sinθ)(cosθ-sinθ)=-.

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下几个命题,正确的是
 

①函数f(x)=
x-1
2x+1
对称中心是(-
1
2
,-
1
2
)

②已知Sn是等差数列{an},n∈N*的前n项和,若S7>S5,则S9>S3
③函数f(x)=x|x|+px+q(x∈R)为奇函数的充要条件是q=0;
④已知a,b,m均是正数,且a<b,则
a+m
b+m
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在实数集R上的奇函数,且f(x)=-f(x+2),当0≤x≤2时,f(x)=
x
2
,若已知n∈Z,则使f(x)=-
1
2
成立的x的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:022

(2007浙江,12)已知,且,则的值是________

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二下学期期中理科数学试卷(解析版) 题型:解答题

(本小题满分12分)

已知函数且导数.

(1)试用含有的式子表示,并求的单调区间;

(2)对于函数图象上不同的两点,且,如果在函数图像上存在点(其中)使得点处的切线,则称存在“相依切线”.特别地,当时,又称存在“中值相依切线”.试问:在函数上是否存在两点使得它存在“中值相依切线”?若存在,求的坐标,若不存在,请说明理由.

 

查看答案和解析>>

同步练习册答案