精英家教网 > 高中数学 > 题目详情
20.函数f(x)在定义域R内可导,若f(x)=f(2-x),且(x-1)f′(x)>0,f(2)=0,则x•f(x)<0的解集为(  )
A.(0,2)B.(0,1)∪(2,+∞)C.(-∞,0)∪(0,2)D.(-∞,0)∪(2,+∞)

分析 通过讨论x的范围,求出f(x)的单调性,根据f(x)=f(2-x),求出f(x)的对称性,从而求出不等式的解集即可.

解答 解:∵(x-1)f′(x)>0,
∴当x>1时,f′(x)>0,此时函数f(x)单调递增,
当x<1时,f′(x)<0,此时函数f(x)单调递减,
又f(x)=f(2-x),∴f(x+1)=f(1-x),对称轴x=1,
而f(2)=0,
∴x∈(-∞,0),f(x)>0,
x∈(0,2),f(x)<0,
x∈(2,+∞),f(x)>0,
x•f(x)<0的解集是(-∞,0)∪(0,2),
故选:C.

点评 本题考查了函数的单调性、对称性,考查不等式问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2-1,g(x)=a|x-1|.
(Ⅰ)若不等式f(x)≥g(x)恒成立,求实数a的取值范围.
(Ⅱ)若a>-2,设函数h(x)=|f(x)|+g(x)在[0,2]上的最大值为t(a),求t(a)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=2x3-6x-3a|2lnx-x2+1|,(a∈R).
(1)当a=0时,求函数f(x)的单调区间;
(2)若函数f(x)存在两个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}满足an+1=3an+2,n∈N*,a1=2,bn=an+1
(1)证明数列{bn}为等比数列.
(2)求数列{an}的通项公式an与其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图是某学院抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率依次成等差数列,第2小组的频数为20,则抽取的学生人数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知点P(1,1)是直线l被椭圆$\frac{x^2}{4}$+$\frac{y^2}{2}$=1所截得的线段的中点,则直线l的方程为x+2y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=x3+$\frac{3}{2}$x2-6x+4的极值点有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=3-sin$\frac{πx}{2}$,则f(1)+f(2)+f(3)+…+f(100)=(  )
A.150B.200C.250D.300

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法正确的是(  )
A.线性回归模型y=bx+a+e是一次函数
B.在线性回归模型y=bx+a+e中,因变量y是由自变量x唯一确定的
C.在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适
D.用R2=1-$\frac{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-{\widehat{y}}_{i})^{2}}{\underset{\stackrel{n}{∑}}{i=1}({y}_{i}-\overline{y})^{2}}$来刻画回归方程,R2越小,拟合的效果越好

查看答案和解析>>

同步练习册答案