精英家教网 > 高中数学 > 题目详情

【题目】如图,矩形所在的平面与正方形所在的平面相互垂直,的中点.

)求证:平面

)求证:平面平面

)若,求多面体的体积.

【答案】)详见解析)详见解析)1

【解析】

试题)连接BD交AC于O,连接EO.证明EOQB,即可证明QB平面AEC;()证明CDAE,AEQD.推出AE平面QDC,然后证明平面QDC平面AEC;()通过多面体ABCEQ为四棱锥Q-ABCD截去三棱锥E-ACD所得,计算求解即可

试题解析:证明:连接,连接

因为 分别为的中点,则

平面平面

所以 平面

)证明: 因为矩形所在的平面与正方形所在的平面相互垂直,

平面

所以平面

平面 所以

因为的中点, 所以

所以平面

所以平面平面

)解:多面体为四棱锥截去三棱锥所得,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面为直角梯形, 均为等边三角形,点的中点.

(1)证明:平面平面

(2)若点在线段上且求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),若以直角坐标系中的原点为极点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为为实数.

1)求曲线的普通方程和曲线的直角坐标方程;

2)若曲线与曲线有公共点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医疗器械公司在全国共有个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这个销售点的年销量绘制出如下的频率分布直方图.

(1)完成年销售任务的销售点有多少个?

(2)若用分层抽样的方法从这个销售点中抽取容量为的样本,求该五组,(单位:千台)中每组分别应抽取的销售点数量.

(3)在(2)的条件下,从该样本中完成年销售任务的销售点中随机选取个,求这两个销售点不在同一组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2名男生、3名女生,全体排成一行,问下列情形各有多少种不同的排法?(以下各题请用数字作答)

1)甲不在中间也不在两端;

2)甲、乙两人必须排在两端;

3)男、女生分别排在一起;

4)男女相间;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是(

A.消耗1升汽油,乙车最多可行驶5千米

B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多

C.甲车以80千米/小时的速度行驶1小时,消耗8升汽油

D.某城市机动车最高限速80千米/小时.相同条件下,在该市用乙车比用丙车更省油

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,直线与坐标轴的交点是椭圆的两个顶点.

(1)求椭圆的方程;

(2)若是椭圆上的两点,且满足,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点,圆轴的正半轴的交点是,过点的直线与圆交于不同的两点.

1)若直线轴交于,且,求直线的方程;

2)设直线的斜率分别是,求的值;

3)设的中点为,点,若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块半圆形的空地,直径米,政府计划在空地上建一个形状为等腰梯形的花圃,如图所示,其中为圆心,在半圆上,其余为绿化部分,设.

1)记花圃的面积为,求的最大值;

2)若花圃的造价为10/,在花圃的边处铺设具有美化效果的灌溉管道,铺设费用为500/米,两腰不铺设,求满足什么条件时,会使总造价最大.

查看答案和解析>>

同步练习册答案