精英家教网 > 高中数学 > 题目详情
2.若动点A、B分别在直线l1:x+y-7=0和l2:x+y-5=0上移动,则AB中点M到原点距离的最小值为(  )
A.3$\sqrt{2}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{2}$

分析 求出两直线的距离为$\frac{|7-5|}{\sqrt{{1}^{2}+{1}^{2}}}$=$\sqrt{2}$,原点到直线的l2:x+y-5=0距离,运用线段的关系求解.

解答 解:∵l1:x+y-7=0和l2:x+y-5=0是平行直线,
∴可判断:过原点且与直线垂直时,M到原点的距离最小.
∵直线l1:x+y-7=0和l2:x+y-5=0,
∴两直线的距离为$\frac{|7-5|}{\sqrt{{1}^{2}+{1}^{2}}}$=$\sqrt{2}$,
∴AB的中点M到原点的距离的最小值为$\frac{5\sqrt{2}}{2}+\frac{\sqrt{2}}{2}$=3$\sqrt{2}$,
故选:A

点评 本题考查了两点距离公式,直线的方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.如果函数y=f(x)是偶函数,且x>0时,y=f(x)是增函数,试比较下列各组函数值的大小,并说明理由.
(1)f(3)与f(3.5);
(2)f(-2)与f(-3);
(3)f(3)与f(-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知全集为R,集合A={x|x<0或x>2},B={x|1<x<3},求
(1)A∩B;   
(2)A∪B;   
(3)∁RA.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数$y=sin(\frac{2π}{3}x+\frac{π}{4})$的最小正周期3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线y=k(x+1)(k>0)与抛物线C:y2=4x交于A,B两点,F为C的焦点,若|FA|=2|FB|,则k=±$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合U={1,2,3,4,5,6},A={2,3,5},B={1,3,6},则∁U(A∪B)=(  )
A.{4}B.ϕC.{1,2,4,5,6}D.{1,2,3,5,6}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-3x+k(k为常数),则f(-1)=(  )
A.2B.1C.-2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.{an}的通项公式为an=-n+p,{bn}的通项公式为${b_n}={2^{n-5}}$,设${c_n}=\left\{\begin{array}{l}{a_n},{a_n}≤{b_n}\\{b_n},{a_n}>{b_n}\end{array}\right.$,若在数列{cn}中,c9>cn,n∈N*,n≠9,则实数p的取值范围是17<p<26.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图点A(0,0,a),在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD=90°,∠ADB=30°,E,F分别是AC,AD的中点,求D,C,E,F这四点的坐标.

查看答案和解析>>

同步练习册答案