精英家教网 > 高中数学 > 题目详情

【题目】如图,已知是半圆的直径,是将半圆圆周四等分的三个分点

(1)从这5个点中任取3个点,求这3个点组成直角三角形的概率;

(2)在半圆内任取一点,求的面积大于的概率.

【答案】(1);(2).

【解析】

试题分析:对于问题(1)首先求出从个点中任取个点,一共可以组成的三角形的个数,再求出以为直径的三角形的个数,即可求出所求的概率;对于问题(2)首先求出当三角形的面积等于时点在半圆内的位置,然后再根据几何概型即可求得所需的结论.

试题解析:(1)从个点中任取个点,一共可以组成个三角形:,其中是直角三角形的只有个,所以组成直角三角形的概率为

(2)连接,取线段的中点,则

易求得,当点在线段上时,

所以只有当点落在阴影部分时,面积才能大于,而,所以由几何概型的概率公式得的面积大于的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】四棱锥PABCD的底面ABCD是正方形,EF分别为ACPB上的点,它的直观图,正视图,侧视图如图所示.

(1)EF与平面ABCD所成角的大小;

(2)求二面角BPAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为抛物线上一个动点, 为圆上一个动点,那么点到点的距离与点到抛物线的准线距离之和的最小值是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中将底面为直角三角形的直棱柱称为堑堵,将底面为矩形的棱台称为刍童.在如图所示的堑堵与刍童的组合体中,.台体体积公式:,其中分别为台体上、下底面面积,为台体高.

(Ⅰ)证明:直线 平面

(Ⅱ)若,,三棱锥的体积,求该组合体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥PABCD中,底面边长为2,侧棱长为MN分别为ABBC的中点,以O为原点,射线OMONOP分别为x轴、y轴、z轴的正方向建立空间直角坐标系.若EF分别为PAPB的中点,求ABCDEF的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆上每一点的纵坐标不变,横坐标变为原来的,得曲线C.

)写出C的参数方程;

)设直线l C的交点为P1P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1 P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5.

(1)求数列{bn}的通项公式;

(2)数列{bn}的前n项和为Sn,求证:数列是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司拟投资100万元有两种投资方案可供选择:一种是年利率为10%按单利计算5年后收回本金和利息;另一种是年利率为9%按每年复利一次计算5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)lg(axbx)(a>1>b>0).

(1)f(x)的定义域;

(2)f(x)(1,+∞)上递增且恒取正值ab满足的关系式.

查看答案和解析>>

同步练习册答案