精英家教网 > 高中数学 > 题目详情
1.在极坐标系中,射线l:θ=$\frac{π}{6}$与圆C:ρ=2交于点A,椭圆Γ的方程为ρ2=$\frac{3}{1+2si{n}^{2}θ}$,以极点为原点,极轴为x轴正半轴建立平面直角坐标系xOy
(Ⅰ)求点A的直角坐标和椭圆Γ的参数方程;
(Ⅱ)若E为椭圆Γ的下顶点,F为椭圆Γ上任意一点,求$\overrightarrow{AE}$•$\overrightarrow{AF}$的取值范围.

分析 (Ⅰ)射线l:θ=$\frac{π}{6}$与圆C:ρ=2交于点A(2,$\frac{π}{6}$),可得点A的直角坐标;求出椭圆直角坐标方程,即可求出椭圆Γ的参数方程;
(Ⅱ)设F($\sqrt{3}$cosθ,sinθ),E(0,-1),求出相应的向量,即可求$\overrightarrow{AE}$•$\overrightarrow{AF}$的取值范围.

解答 解:(Ⅰ)射线l:θ=$\frac{π}{6}$与圆C:ρ=2交于点A(2,$\frac{π}{6}$),点A的直角坐标($\sqrt{3}$,1);
椭圆Γ的方程为ρ2=$\frac{3}{1+2si{n}^{2}θ}$,直角坐标方程为$\frac{{x}^{2}}{3}$+y2=1,参数方程为$\left\{\begin{array}{l}{x=\sqrt{3}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数);
(Ⅱ)设F($\sqrt{3}$cosθ,sinθ),
∵E(0,-1),
∴$\overrightarrow{AE}$=(-$\sqrt{3}$,-2),$\overrightarrow{AF}$=($\sqrt{3}$cosθ-$\sqrt{3}$,sinθ-1),
∴$\overrightarrow{AE}$•$\overrightarrow{AF}$=-3cosθ+3-2(sinθ-1)=$\sqrt{13}$sin(θ+α)+5,
∴$\overrightarrow{AE}$•$\overrightarrow{AF}$的取值范围是[5-$\sqrt{13}$,5+$\sqrt{13}$].

点评 本题考查极坐标方程、直角坐标方程、参数方程的转化,考查向量的数量积公式,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.函数f(x)=ax-1+4的图象恒过定点P,则P点坐标是(1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=x3-ax2+10.
(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;
(2)在区间[1,2]内存在实数x,使得f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是(  )
A.此题没有考生得12分
B.此题第1问比第2问更能区分学生数学成绩的好与坏
C.分数在[40,50)的考生此大题的平均得分大约为4.8分
D.全体考生第1问的得分标准差小于第2问的得分标准差

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(b>a>0)的右焦点为F,O为坐标原点,若存在直线l过点F交双曲线C的右支于A,B两点,使$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,则双曲线离心率的取值范围是$\sqrt{3}$>e≥$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.关于函数f(x)=x3-3x2+6x的单调性是(  )
A.增函数B.先增后减C.先减后增D.减函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足$\left\{\begin{array}{l}x>0\\ x+y≤7\\ x+2≤2y\end{array}\right.$,则$\frac{y}{x}$的最小值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知△ABC的面积为$\sqrt{3}$,且∠C=30°,BC=2$\sqrt{3}$,则AB等于(  )
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=sin(ωx+\frac{π}{4})$,其中ω>0,x∈R.
(1)f(0)=$\frac{\sqrt{2}}{2}$;
(2)如果函数f(x)的最小正周期为π,当$x∈[0,\frac{π}{2}]$时,求f(x)的最大值.

查看答案和解析>>

同步练习册答案