精英家教网 > 高中数学 > 题目详情
如图所示,正三棱柱ABCA1B1C1的底面边长为a,侧棱长为,若经过对角线AB1且与对角线BC1平行的平面交上底面一边A1C1于点D.

(1)确定点D的位置,并证明你的结论;

(2)求二面角A1 AB-1D的大小.

(1)证明:设A1BAB1=E,?

BC1∥面ADB1,面ADB1∩面A1BC1=DE,∴BC1DE.?

AA1B1B为矩形,∴EBA1中点.?

DEBC1,∴.?

?∴DA1C1中点.??

(2)解析:过DDFA1B1F,?

AA1⊥面A1B1C1,∴AA1DF.?

DF⊥面AA1B1.设所求二面角的大小为α,cosα==.∴α=45°.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是
3
,D是AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大小;
(Ⅲ)求点A到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年唐山一中调研二) 如图所示,正三棱柱的底面边长为a,点M在BC上,是以点M为直角顶点的等腰直角三角形。

   (Ⅰ)求证:点M为边BC的中点;

   (Ⅱ)求点C到平面的距离;

   (Ⅲ)求二面角的大小。

 

查看答案和解析>>

科目:高中数学 来源:同步题 题型:证明题

如图所示,正三棱柱ABC-A1B1C1的棱长均为a,D、E分别为C1C与AB的中点,A1B交AB1于G。

(1)求证:A1B⊥AD;
(2)求证:CE∥平面AB1D。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省雅安中学高二(下)4月月考数学试卷(理科)(解析版) 题型:解答题

如图所示,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是,D是AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大小;
(Ⅲ)求点A到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年四川省宜宾市高三(上)调研数学试卷(理科)(解析版) 题型:解答题

如图所示,正三棱柱ABC-A1B1C1的底面边长是2,侧棱长是,D是AC的中点.
(Ⅰ)求证:B1C∥平面A1BD;
(Ⅱ)求二面角A1-BD-A的大小;
(Ⅲ)求点A到平面A1BD的距离.

查看答案和解析>>

同步练习册答案