精英家教网 > 高中数学 > 题目详情

【题目】某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算的K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列表述中正确的是( )
A.有95℅的把握认为“这种血清能起到预防感冒的作用”
B.若有人未使用该血清,那么他一年中有95℅的可能性得感冒
C.这种血清预防感冒的有效率为95℅
D.这种血清预防感冒的有效率为5℅

【答案】A
【解析】:由题可知,在假设 成立情况下, 的概率约为0.05,即在犯错的概率不错过0.05的前提下认为“血清起预防感冒的作用”,即有95℅的把握认为“这种血清能起到预防感冒的作用”.这里的95℅是我们判断 不成立的概率量度而非预测血清与感冒的几率的量度,故B错误.C,D也犯有B中的错误.
分析:本题主要考查了独立性检验的应用,解决问题的关键是根据独立性检验的原理分析计算即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点Q(ρ,θ),分别按下列条件求出点P的极坐标.
(1)点P是点Q关于极点O的对称点;
(2)点P是点Q关于直线θ= 的对称点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数f(x)的定义域为[0,4],则函数g(x)=f(x)+f(x2)的定义域为(
A.[0,2]
B.[0,16]
C.[﹣2,2]
D.[﹣2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,其中a>0,且函数f(x)的最大值是
(1)求实数a的值;
(2)若函数g(x)=lnf(x)﹣b有两个零点,求实数b的取值范围;
(3)若对任意的x∈(0,2),都有f(x)< 成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分设函数

若函数在定义域上为增函数,求实数的取值范围;

的条件下,若函数使得成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)= (a∈R)是奇函数,函数g(x)= 的定义域为(﹣1,+∞).
(1)求a的值;
(2)若g(x)= 在(﹣1,+∞)上递减,根据单调性的定义求实数m的取值范围;
(3)在(2)的条件下,若函数h(x)=f(x)+g(x)在区间(﹣1,1)上有且仅有两个不同的零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一列火车从重庆驶往北京,沿途有n个车站(包括起点站重庆和终点站北京).车上有一邮政车厢,每停靠一站便要卸下火车已经过的各站发往该站的邮袋各1个,同时又要装上该站发往以后各站的邮袋各1个,设从第k站出发时,邮政车厢内共有邮袋ak个(k=1,2,…,n).
(1)求数列{ak}的通项公式;
(2)当k为何值时,ak的值最大,求出ak的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是奇函数,且f(2)=﹣
(1)求函数f(x)的解析式
(2)判断函数f(x)在(0,1)上的单调性,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(2+x),g(x)=ln(2﹣x)
(1)判断函数h(x)=f(x)﹣g(x)的奇偶性;
(2)求使f(x)≥g(x)成立的x的取值范围.

查看答案和解析>>

同步练习册答案