精英家教网 > 高中数学 > 题目详情

【题目】某县为了帮助农户脱贫致富,鼓励农户利用荒地山坡种植果树,某农户考察了三种不同的果树苗.经过引种实验发现,引种树苗的自然成活率为,引种树苗的自然成活率均为

1)任取树苗各一棵,估计自然成活的棵数为,求的分布列及其数学期望;

2)将(1)中的数学期望取得最大值时的值作为种树苗自然成活的概率.该农户决定引种种树苗,引种后没有自然成活的树苗有的树苗可经过人工栽培技术处理,处理后成活的概率为,其余的树苗不能成活.

①求一棵种树苗最终成活的概率;

②若每棵树苗引种最终成活可获利元,不成活的每棵亏损元,该农户为了获利期望不低于万元,问至少要引种种树苗多少棵?

【答案】1)分布列见解析,;(2)①;②.

【解析】

1)根据题意得出随机变量的可能取值有,计算出随机变量在不同取值下的概率,可得出随机变量的分布列,进而可求得随机变量的数学期望;

2)①由(1)知当时,最大,然后分一棵种树苗自然成活和非自然成活两种情况,可求得所求事件的概率;

②记棵树苗的成活棵数,由题意可知,利用二项分布的期望公式得出,根据题意得出关于的不等式,解出的取值范围即可得解.

1)依题意,的所有可能值为

.

所以,随机变量的分布列为:

2)由(1)知当时,取得最大值.

①一棵种树苗最终成活的概率为:

②记棵树苗的成活棵数,则

所以该农户至少要种植棵树苗,才可获利不低于万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在五面体中, ,平面平面..

(1)证明:直线平面

(2)已知为棱上的点,试确定点位置,使二面角的大小为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为,(为参数),直线的普通方程为,设的交点为,当变化时,记点的轨迹为曲线. 在以原点为极点,轴正半轴为极轴的极坐标系中,直线的方程为.

1)求曲线的普通方程;

2)设点上,点上,若直线的夹角为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线,圆.

1)当为何值时,直线平行;

2)当直线与圆相交于两点,且时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若上单调递增,求实数的取值范围;

2)若对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是函数的导数.

1)若,证明在区间上没有零点;

2)在恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是函数的导数.

1)若,证明在区间上没有零点;

2)在恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率是,且经过点.

1)求椭圆C的标准方程;

2)过右焦点F的直线l与椭圆C相交于AB两点,点B关于x轴的对称点为H,试问的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求函数的单调区间及极值;

(2)时,存在,使方程成立,求实数的最小值.

查看答案和解析>>

同步练习册答案