【题目】设p:实数x满足x2﹣4ax+3a2<0,q:实数x满足|x﹣3|<1.
(1)若a=1,且p∧q为真,求实数x的取值范围;
(2)若其中a>0且¬p是¬q的充分不必要条件,求实数a的取值范围.
【答案】
(1)解:由x2﹣4ax+3a2<0得(x﹣3a)(x﹣a)<0
当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.
由|x﹣3|<1,得﹣1<x﹣3<1,得2<x<4
即q为真时实数x的取值范围是2<x<4,
若p∧q为真,则p真且q真,
∴实数x的取值范围是2<x<3
(2)解:由x2﹣4ax+3a2<0得(x﹣3a)(x﹣a)<0,
若¬p是¬q的充分不必要条件,
则¬p¬q,且¬q¬p,
设A={x|¬p},B={x|¬q},则AB,
又A={x|¬p}={x|x≤a或x≥3a},
B={x|¬q}={x|x≥4或x≤2},
则0<a≤2,且3a≥4
∴实数a的取值范围是
【解析】(1)若a=1,根据p∧q为真,则p,q同时为真,即可求实数x的取值范围;(2)根据¬p是¬q的充分不必要条件,建立条件关系即可求实数a的取值范围.
科目:高中数学 来源: 题型:
【题目】已知椭圆两焦点分别为是椭圆在第一象限弧上一点,并满足,过P作倾斜角互补的两条直线分别交椭圆于两点.
(1)求点坐标;
(2)求证:直线的斜率为定值;
(3)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=xlnx.
(Ⅰ)设函数g(x)= ,求g(x)的单调区间;
(Ⅱ)若方程f(x)=t有两个不相等的实数根x1 , x2 , 求证:x1+x2 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以原点O为极点,x轴为正半轴为极轴,建立极坐标系.设曲线C: (α为参数);直线l:ρ(cosθ+sinθ)=4.
(Ⅰ)写出曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)求曲线C上的点到直线l的最大距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=ex(x2+ax+b)有极值点x1 , x2(x1<x2),且f(x1)=x1 , 则关于x的方程f2(x)+(2+a)f(x)+a+b=0的不同实根个数为( )
A.0
B.3
C.4
D.5
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆O的直径,AC是弦,∠BAC的平分线AD交圆O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.
(1)求证:DE是圆O的切线;
(2)若∠CAB=60°,⊙O的半径为2,EC=1,求DE的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+1|﹣|x﹣2|.
(Ⅰ)求不等式f(x)≥1的解集;
(Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图象是由函数g(x)=cosx的图象经过如下变换得到:先将g(x)的图象向右平移 个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变,则函数f(x)的图象的一条对称轴方程为( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com