精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,点A(﹣1,﹣2)、B(2,3)、C(﹣2,﹣1).
(1)求以线段AB、AC为邻边的平行四边形两条对角线的长;
(2)设实数t满足( =0,求t的值.

【答案】
(1)解:(方法一)由题设知 ,则

所以

故所求的两条对角线的长分别为

(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:

E为B、C的中点,E(0,1)

又E(0,1)为A、D的中点,所以D(1,4)

故所求的两条对角线的长分别为BC= 、AD=


(2)解:由题设知: =(﹣2,﹣1),

由( =0,得:(3+2t,5+t)(﹣2,﹣1)=0,

从而5t=﹣11,所以

或者:


【解析】(1)(方法一)由题设知 ,则 .从而得: .(方法二)设该平行四边形的第四个顶点为D,两条对角线的交点为E,则:由E是AC,BD的中点,易得D(1,4)从而得:BC= 、AD= ;(2)由题设知: =(﹣2,﹣1), .由( =0,得:(3+2t,5+t)(﹣2,﹣1)=0,从而得: .或者由 ,得:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,g(x)=ax,(a∈R).
(1)若函数y=f(x)是偶函数,求出符合条件的实数a的值;
(2)若方程f(x)=g(x)有两解,求出实数a的取值范围;
(3)若a>0,记F(x)=g(x)f(x),试求函数y=F(x)在区间[1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)试讨论的单调性;

2)若(实数c是与a无关的常数),当函数有三个不同的零点时,a的取值范围恰好是,求c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin2x+2 sin2x+1﹣
(1)求函数f(x)的最小正周期和单调递增区间;
(2)当x∈[ ]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三棱柱的底面边长为2 是侧棱的中点.

1证明:平面平面

2若平面与平面所成锐角的大小为,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在实数a,使函数 为奇函数,同时使函数 为偶函数,证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=loga(x﹣3a)(a>0且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,点
Q(x﹣2a,﹣y)是函数y=g(x)图象上的点.
(1)写出函数y=g(x)的解析式;
(2)若当x∈[a+2,a+3]时,恒有|f(x)﹣g(x)|≤1,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为a的正方体ABCD﹣A1B1C1D1中,E、F分别是AB、BC的中点,EF与BD交于点G,M为棱BB1上一点.
(1)证明:EF∥平面 A1C1D;
(2)当B1M:MB的值为多少时,D1M⊥平面 EFB1 , 证明之;
(3)求点D到平面 EFB1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x+1)是定义在R上的周期为2的偶函数,当x∈[1,2)时,f(x)=log2x,设a=f( ), ,c=f(1),则a,b,c的大小关系为(
A.a<c<b
B.c<a<b
C.b<c<a
D.c<b<a

查看答案和解析>>

同步练习册答案