精英家教网 > 高中数学 > 题目详情
19.已知向量$\overrightarrow a=(cosα,2sinα),\overrightarrow b=(2cosβ,-sinβ)$,$α、β∈[0,\frac{π}{2}]$.
(1)若$\overrightarrow a•\overrightarrow b=-\frac{10}{13}$,$sinβ=\frac{4}{5}$,求sin(α+2β)的值;
(2)若$\overrightarrow c=(0,1)$,求$|{\overrightarrow a-\overrightarrow c}|$的取值范围.

分析 (1)进行数量积的坐标运算,并化简可得到$\overrightarrow{a}•\overrightarrow{b}=2cos(α+β)=-\frac{10}{13}$,根据α,β的范围即可求出sin(α+β)的值,而根据$sinβ=\frac{4}{5}$及β的范围即可求出cosβ的值,而sin(α+2β)=sin[(α+β)+β],这样根据两角和的正弦公式即可求出sin(α+2β)的值;
(2)先求出$\overrightarrow{a}-\overrightarrow{c}$的坐标,从而求出$|\overrightarrow{a}-\overrightarrow{c}|=\sqrt{3si{n}^{2}α-4sinα+2}$,换元sinα=t,t∈[0,1],从而得出$|\overrightarrow{a}-\overrightarrow{c}|=\sqrt{3{t}^{2}-4t+2}$,这样配方即可求出$|\overrightarrow{a}-\overrightarrow{c}|$的取值范围.

解答 解:(1)$\overrightarrow a•\overrightarrow b=2cosαcosβ-2sinαsinβ$=$2cos(α+β)=-\frac{10}{13}$;
∴$cos(α+β)=-\frac{5}{13}$;
∵0≤α+β≤π;
∴$sin(α+β)=\sqrt{1-{{cos}^2}(α+β)}=\frac{12}{13}$;
又 $sinβ=\frac{4}{5}$,$β∈[0,\frac{π}{2}]$,$cosβ=\frac{3}{5}$;
∴sin(α+2β)=sin[(α+β)+β]
=sin(α+β)cosβ+cos(α+β)sinβ
=$\frac{12}{13}×\frac{3}{5}-\frac{5}{13}×\frac{4}{5}$
=$\frac{16}{65}$;
(2)由已知得:$\overrightarrow a-\overrightarrow c=(cosα,2sinα-1)$;
∴$|{\overrightarrow a-\overrightarrow c}|=\sqrt{{{cos}^2}α+{{(2sinα-1)}^2}}$=$\sqrt{3{{sin}^2}α-4sinα+2}$;
令t=sinα,∵$α∈[0,\frac{π}{2}]$,∴t∈[0,1];
$|\overrightarrow{a}-\overrightarrow{c}|=\sqrt{3{t}^{2}-4t+2}$=$\sqrt{3(t-\frac{2}{3})^{2}+\frac{2}{3}}$;
∴$t=\frac{2}{3}$时,$|\overrightarrow{a}-\overrightarrow{c}|$取最小值$\frac{\sqrt{6}}{3}$,t=0时,$|\overrightarrow{a}-\overrightarrow{c}|$取最大值$\sqrt{2}$;
∴$|{\overrightarrow a-\overrightarrow c}|$的范围是$[\frac{\sqrt{6}}{3},\sqrt{2}]$.

点评 考查数量积的坐标运算,两角和的正余弦公式,以及向量坐标的减法运算,配方求二次函数最值的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.(1)已知角α的终边上一点P的坐标为$(-\sqrt{3},2)$,求sinα,cosα和tanα.
(2)在[0°,720°]中与-21°16′终边相同的角有哪些?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow a=(cosα,sinα)$,$\overrightarrow b=(cosβ,sinβ)$,且$α-β=\frac{2π}{3}$,则$\overrightarrow a$与$\overrightarrow a+\overrightarrow b$的夹角为(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+bx-alnx(a≠0)
(1)当b=0时,讨论函数f(x)的单调性;
(2)若x=2是函数f(x)的极值点,1是函数f(x)的一个零点,求a+b的值;
(3)若对任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=[x+\frac{3}{2}]$(取整函数),$g(x)=\left\{{\begin{array}{l}{1,x∈Q}\\{0,x∉Q}\end{array}}\right.$,则f(g(π))的值为(  )
A.1B.0C.2D.π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x3-ax2-3x.
(Ⅰ)若x=-$\frac{1}{3}$是f(x)的极大值点,求f(x)的单调递减区间;
(Ⅱ)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;
(Ⅲ)在(Ⅰ)的条件下,是否存在实数b,使得函数g(x)=bx的图象与函数f(x)的图象恰有3个交点,若存在,求出b的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设x,y满足约束条件$\left\{\begin{array}{l}{2x-y+2≥0}\\{8x-y-4≤0}\\{x≥0,y≥0}\end{array}\right.$
(1)求目标函数z=3x-y的最大值;
(2)若目标函数z=ax+by(a>0,b>0)的最大值为6,求$\frac{1}{a}+\frac{4}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设x,y为正实数,且x+2y=1,则$\frac{1}{x}+\frac{1}{y}$的最小值为(  )
A.$2+2\sqrt{2}$B.$3+2\sqrt{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在△ABC中,AE:EB=1:3,BD:DC=2:1,AD与CE相交于点F,则$\frac{EF}{FC}+\frac{AF}{FD}$的值为$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案