精英家教网 > 高中数学 > 题目详情
ABC中,内角A,B,C的对边分别为a,b,c.
已知.
(Ⅰ)求的值;  (Ⅱ)若,求ABC的面积.
(1)(2)

试题分析:(1)的值,所以将式子中变为,又因为,所以,将代入就能求出的值.(2)利用第一问=求得再利用正弦定理求出C边为,在由余弦定理cosA=.求出b边为.因为可以求出所以.利用三角形面积公式可以得出
试题解析:(Ⅰ)∵cosA=>0,∴sinA=
cosC=sinB=sin(A+C)=sinAcosC+sinCcosA=cosC+sinC.
整理得:tanC=.                  6分
(Ⅱ)由(Ⅰ)知 sinC=
又由正弦定理知:,故. (1)
由余弦定理得:cosA=. (2)
解(1)(2)得:orb=(舍去).∴ABC的面积为:S=.    12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在中,已知,边上的一点,

(Ⅰ)求的值;
(Ⅱ)求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某商品一年内出厂价格在6元的基础上按月份随正弦曲线波动,已知3月份达到最高价格8元,7月份价格最低为4元.该商品在商店内的销售价格在8元基础上按月份随正弦曲线波动,5月份销售价格最高为10元,9月份销售价最低为6元.
(1)试分别建立出厂价格、销售价格的模型,并分别求出函数解析式;
(2)假设商店每月购进这种商品m件,且当月销完,试写出该商品的月利润函数;
(3)求该商店月利润的最大值.(定义运算

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某个公园有个池塘,其形状为直角△ABC,∠C=90°,AB=2百米,BC=1百米.

(1)现在准备养一批供游客观赏的鱼,分别在AB、BC、CA上取点D,E,F,如图(1),使得EF‖AB,EF⊥ED,在△DEF喂食,求△DEF 面积S△DEF的最大值;
(2)现在准备新建造一个荷塘,分别在AB,BC,CA上取点D,E,F,如图(2),建造△DEF连廊(不考虑宽度)供游客休憩,且使△DEF为正三角形,求△DEF边长的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)求的最小正周期及最大值;
(2)若,且,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中的内角所对的边分别为,若,且.
(Ⅰ)求角的大小;
(Ⅱ)求函数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,角所对的边分别为
(1)求角的大小;
(2)若,求函数的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,若b=2asinB,则A等于(  )
A.30°或60°B.45°或60°
C.120°或60°D.30°或150°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,,且,则内角C的余弦值为(     )
A.1B.C.D.

查看答案和解析>>

同步练习册答案