分析 (1)求出椭圆的左顶点,设抛物线的方程为y2=-2px(p>0),可得焦点,解方程即可得到所求;
(2)求得椭圆的焦点,可设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,(a,b>0),求得渐近线方程,由题意可得a,b的方程组,解方程可得a,b,进而得到双曲线的方程.
解答 解:(1)椭圆$\frac{x^2}{64}+\frac{y^2}{16}=1$左顶点为(-8,0),
设抛物线的方程为y2=-2px(p>0),
可得-$\frac{p}{2}$=-8,
解得p=16,
则抛物线的标准方程为y2=-32x;
(2)椭圆$\frac{x^2}{64}+\frac{y^2}{16}=1$的焦点为(-4$\sqrt{3}$,0),(4$\sqrt{3}$,0),
可设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,(a,b>0),
则a2+b2=48,
由渐近线方程y=±$\frac{b}{a}$x,
可得$\frac{b}{a}$=$\sqrt{3}$,
解得a=2$\sqrt{3}$,b=6,
则双曲线的方程为$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{36}$=1.
点评 本题考查抛物线和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 选择结构中不含有顺序结构 | |
B. | 选择结构、循环结构和顺序结构在流程图中一定是并存的 | |
C. | 循环结构中一定包含选择结构 | |
D. | 选择结构中一定有循环结构 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com