精英家教网 > 高中数学 > 题目详情

若a、b、c∈C,则(a-b)2+(b-c)2=0是a=b=c的


  1. A.
    充要条件
  2. B.
    充分但不必要条件
  3. C.
    必要但不充分条件
  4. D.
    即不充分也不必要条件
C
取a=2+i,b=2,c=1,
则(a-b)2+(b-c)2=(2+i-2)2+(2-1)2=i2+1=-1+1=0.显然a≠b≠c.
∴充分性不成立,必要性显然成立.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列几个命题:①若
a
b
-
c
都是非零向量,则“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”的充要条件;②已知等腰△ABC的腰为底的2倍,则顶角A的正切值是
15
7
;③在平面直角坐标系xoy中,四边形ABCD的边AB∥DC,AD∥BC,已知点A(-2,0),B(6,8),C(8,6),则D点的坐标为(0,-1);④设
a
b
c
为同一平面内具有相同起点的任意三个非零向量,且满足
a
b
不共线,
a
c
,|
a
|=|
c
|,则|
b
c
|的值一定等于以
a
b
为邻边的平行四边形的面积.其中正确命题的序号是
 
.(写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东城区二模)已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)+xf′(x)<0(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),则a,b,c的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中正确的有
②③④
②③④
(填序号)
①若
a
b
满足
a
b
>0,则
a
b
所成的角为锐角;
②若
a
b
不共线,
m
=λ1
a
+λ2
b
n
=μ1
a
+μ2
b
(λ1,λ2,μ1,μ2∈R),则
m
n
的充要条件是λ1μ22μ1=0;
③若
OA
+
OB
+
OC
=
O
,且|
OA
|=|
OB
|=|
OC
|
,则△ABC是等边三角形;
④若
a
b
为非零向量,且
a
b
,则|
a
+
b
|=|
a
-
b
|;
⑤设
a
b
c
为非零向量,若
a
b
=
c
b
,则
a
=
c

⑥若
a
b
c
为非零向量,则
a
•(
b
c
)=(
a
b
)•
c

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

有下列几个命题:①若
a
b
-
c
都是非零向量,则“
a
b
=
a
c
”是“
a
⊥(
b
-
c
)
”的充要条件;②已知等腰△ABC的腰为底的2倍,则顶角A的正切值是
15
7
;③在平面直角坐标系xoy中,四边形ABCD的边ABDC,ADBC,已知点A(-2,0),B(6,8),C(8,6),则D点的坐标为(0,-1);④设
a
b
c
为同一平面内具有相同起点的任意三个非零向量,且满足
a
b
不共线,
a
c
,|
a
|=|
c
|,则|
b
c
|的值一定等于以
a
b
为邻边的平行四边形的面积.其中正确命题的序号是______.(写出全部正确结论的序号)

查看答案和解析>>

科目:高中数学 来源:东城区二模 题型:单选题

已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时,f(x)+xf′(x)<0(其中f′(x)是f(x)的导函数),若a=(30.3)•f(30.3),b=(logπ3)•f(logπ3),c=(log3
1
9
)•f(log3
1
9
),则a,b,c的大小关系是(  )
A.a>b>cB.c>>b>aC.c>a>bD.a>c>b

查看答案和解析>>

同步练习册答案