精英家教网 > 高中数学 > 题目详情

【题目】已知向量(其中),记,且满足.

(1)求函数的解析式;

(2)若关于的方程上有三个不相等的实数根,求实数的取值范围。

【答案】(1) (2)

【解析】

(1)根据向量坐标运算公式,求出的表达式,化简为标准型,结合周期可得的解析式;

2)结合所给区间,求出的值域,再利用根的分布问题求解.

1

,得是函数的一个周期,

所以,的最小正周期,解得

又由已知,得 ,

因此,.

2 ,得

故:

因此函数的值域为.

使关于的方程上有三个不相等的实数根,当且仅当关于的方程上分别有一个实数根,或有一个实数根为1,另一实数根在区间

①当关于的方程上分别有一个实数根时,

解得

②当方程的一个根是时,

另一个根为,不满足条件;

③当方程的一个根是时,

另一个根为,不满足条件;

因此,满足条件的实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在下列向量组中,可以把向量=(3,2)表示出来的是(  )
A.=(0,0), =(1,2)
B.=(﹣1,2),=(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知p:指数函数f(x)=(2a-6)x在R上是单调减函数;q:关于x的方程x2-3ax+2a2+1=0的两根均大于3,若pq为真,pq为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=1-a0a≠1)是定义在(-∞+∞)上的奇函数.

1)求a的值;

2)证明:函数fx)在定义域(-∞+∞)内是增函数;

3)当x∈(01]时,tfx≥2x-2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了普及环保知识,增强环保意识,某大学从理工类专业的班和文史类专业的班各抽取名同学参加环保知识测试,统计得到成绩与专业的列联表:( )

优秀

非优秀

总计

14

6

20

7

13

20

总计

21

19

40

附:参考公式及数据:

(1)统计量:,().

(2)独立性检验的临界值表:

0.050

0.010

3.841

6.635

则下列说法正确的是

A. 的把握认为环保知识测试成绩与专业有关

B. 的把握认为环保知识测试成绩与专业无关

C. 的把握认为环保知识测试成绩与专业有关

D. 的把握认为环保知识测试成绩与专业无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上.
(1)若 ,求| |;
(2)设 =m +n (m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三一次月考之后,为了为解数学学科的学习情况,现从中随机抽出若干名学生此次的数学成绩,按成绩分组,制成了下面频率分布表:

组号

分组

频数

频率

第一组

5

0.05

第二组

35

0.35

第三组

30

0.30

第四组

20

0.20

第五组

10

0.10

合计

100

1.00

(1)试估计该校高三学生本次月考数学成绩的平均分和中位数

(2)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从所有学生中采用逐个抽取的方法任意抽取3名学生的成绩,并记成绩落在中的学生数为

求:在三次抽取过程中至少有两次连续抽中成绩在中的概率;

的分布列和数学期望.(注:本小题结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级一次数学考试后,为了解学生的数学学习情况,随机抽取学生的数学成绩,制成表所示的频率分布.

组号

分组

频数

频率

第一组

第二组

第三组

第四

第五组

合计

(1)值;

(2)若从第三、四、五中用分层抽样方法抽取学生,在这学生中随机抽取学生与张老师面谈求第三组中至少有学生与张老师面谈的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

同步练习册答案