精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x
-
1
2
alnx,a∈R.
(Ⅰ)当f(x)存在最小值时,求其最小值φ(a)的解析式;
(Ⅱ)对(Ⅰ)中的φ(a),
(ⅰ)当a∈(0,+∞)时,证明:φ(a)≤1;
(ⅱ)当a>0,b>0时,证明:φ′(
a+b
2
)≤
φ′(a)+φ′(b)
2
≤φ′(
2ab
a+b
).
分析:(Ⅰ)由条件知,f′(x)=
1
2
x
-
a
2x
=
x
-a
2x
(x>0),然后讨论a的正负,利用导数研究函数的单调性,从而求出求出f(x)的最小值;
(Ⅱ)由(Ⅰ)知φ′(a)=-lna,从而分别求出φ′(
a+b
2
)、
φ′(a)+φ′(b)
2
、φ′(
2ab
a+b
)的值,然后利用基本不等式可得结论.
解答:解:(Ⅰ)求导数,得f′(x)=
1
2
x
-
a
2x
=
x
-a
2x
(x>0).
(1)当a≤0时,f′(x)=
x
-a
2x
>0,f(x)在(0,+∞)上是增函数,无最小值.
(2)当a>0时,令f′(x)=0,解得x=a2
当0<x<a2时,f′(x)<0,∴f(x)在(0,a2)上是减函数;
当x>a2时,f′(x)>0,∴f(x)在(a2,+∞)上是增函数.
∴f(x)在x=a2处取得最小值f(a2)=a-alna.
故f(x)的最小值φ(a)的解析式为φ(a)=a-alna(a>0).…(6分)
(Ⅱ)由(Ⅰ),知φ(a)=a-alna(a>0),
求导数,得φ′(a)=-lna.
(ⅰ)令φ′(a)=0,解得a=1.
当0<a<1时,φ′(a)>0,∴φ(a)在(0,1)上是增函数;
当a>1时,φ′(a)<0,∴φ(a)在(1,+∞)上是减函数.
∴φ(a)在a=1处取得最大值φ(1)=1.
故当a∈(0,+∞)时,总有φ(a)≤1.…(10分)
(ⅱ)当a>0,b>0时,
φ′(a)+φ′(b)
2
=-
lna+lnb
2
=-ln
ab
,①
φ′(
a+b
2
)=-ln(
a+b
2
)≤-ln
ab
,②
φ′(
2ab
a+b
)=-ln(
2ab
a+b
)≥-ln
2ab
2
ab
=-ln
ab
,③
由①②③,得φ′(
a+b
2
)≤
φ′(a)+φ′(b)
2
≤φ′(
2ab
a+b
).…(14分)
点评:本题主要考查了利用导数研究函数的单调性和最值,同时考查了基本不等式的应用,以及计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案