【题目】设函数为的导函数.
(Ⅰ)求的单调区间;
(Ⅱ)当时,证明;
(Ⅲ)设为函数在区间内的零点,其中,证明.
【答案】(Ⅰ)单调递增区间为的单调递减区间为.(Ⅱ)见证明;(Ⅲ)见证明
【解析】
(Ⅰ)由题意求得导函数的解析式,然后由导函数的符号即可确定函数的单调区间;
(Ⅱ)构造函数,结合(Ⅰ)的结果和导函数的符号求解函数的最小值即可证得题中的结论;
(Ⅲ)令,结合(Ⅰ),(Ⅱ)的结论、函数的单调性和零点的性质放缩不等式即可证得题中的结果.
(Ⅰ)由已知,有.
当时,有,得,则单调递减;
当时,有,得,则单调递增.
所以,的单调递增区间为,
的单调递减区间为.
(Ⅱ)记.依题意及(Ⅰ)有:,
从而.当时,,故
.
因此,在区间上单调递减,进而.
所以,当时,.
(Ⅲ)依题意,,即.
记,则.
且.
由及(Ⅰ)得.
由(Ⅱ)知,当时,,所以在上为减函数,
因此.
又由(Ⅱ)知,故:
.
所以.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为,两个焦点与短轴一个顶点构成等腰直角三角形,过点且与x轴不重合的直线l与椭圆交于M,N不同的两点.
(Ⅰ)求椭圆P的方程;
(Ⅱ)当AM与MN垂直时,求AM的长;
(Ⅲ)若过点P且平行于AM的直线交直线于点Q,求证:直线NQ恒过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年月,电影《毒液》在中国上映,为了了解江西观众的满意度,某影院随机调查了本市观看影片的观众,现从调查人群中随机抽取部分观众.并用如图所示的表格记录了他们的满意度分数(分制),若分数不低于分,则称该观众为“满意观众”,请根据下面尚未完成并有局部污损的频率分布表(如图所示),解决下列问题.
组别 | 分组 | 频数 | 频率 |
第组 | |||
第组 | |||
第组 | |||
第组 | |||
第组 | |||
合计 |
(1)写出、的值;
(2)画出频率分布直方图,估算中位数;
(3)在选取的样本中,从满意观众中随机抽取名观众领取奖品,求所抽取的名观众中至少有名观众来自第组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】 如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,,
(Ⅰ)设分别为的中点,求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知, 是双曲线的左,右焦点,点在双曲线上,且,则下列结论正确的是( )
A. 若,则双曲线离心率的取值范围为
B. 若,则双曲线离心率的取值范围为
C. 若,则双曲线离心率的取值范围为
D. 若,则双曲线离心率的取值范围为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,某企业每年消耗电费约24万元,为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的工本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为0.5.为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费(单位:万元)与安装的这种太阳能电池板的面积(单位:平方米)之间的函数关系是为常数).记为该村安装这种太阳能供电设备的费用与该村15年共将消耗的电费之和.
(1)试解释的实际意义,并建立关于的函数关系式;
(2)当为多少平方米时,取得最小值?最小值是多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com