【题目】已知函数f(x)=cos4x﹣sin4x.下列结论正确的是( )
A.函数f(x)在区间[0, ]上是减函数
B.函数f(x)的图象关于原点对称
C.f(x)的最小正周期为
D.f(x)的值域为[﹣ , ]
科目:高中数学 来源: 题型:
【题目】【广西南宁2017届高三检测】根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图.
(1)已知、,三个年龄段的上网购物者人数成等差数列,求,的值;
(2)该电子商务平台将年龄在之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放80元的代金券,已经采用分层抽样的方式从参与调查的1000位上网购物者中抽取了10人,现在要在这10人中随机抽取3人进行回访,求此三人获得代金券总和的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={1,2,3},集合B={x|a+1<x<6a﹣1},其中a∈R.
(1)写出集合A的所有真子集;
(2)若A∩B={3},求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某钢厂打算租用, 两种型号的火车车皮运输900吨钢材, , 两种车皮的载货量分别为36吨和60吨,租金分别为1.6万元/个和2.4万元/个,钢厂要求租车皮总数不超过21个,且型车皮不多于型车皮7个,分别用, 表示租用, 两种车皮的个数.
(Ⅰ)用, 列出满足条件的数学关系式,并画出相应的平面区域;
(Ⅱ)分别租用, 两种车皮的个数是多少时,才能使得租金最少?并求出此最小租金.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C经过点,且圆心在直线上,又直线与圆C交于P,Q两点.
(1)求圆C的方程;
(2)若,求实数的值;
(3)过点作直线,且交圆C于M,N两点,求四边形的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在矩形ABCD中,边AB、AD的长分别为2,1,若M,N分别是边BC、CD上的点,且满足 = =λ.
(1)当λ= 时,求向量 和 夹角的余弦值;
(2)求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据统计,某物流公司每天的业务中,从甲地到乙地的可配送的货物量的频率分布直方图,如图所示,将频率视为概率,回答以下问题.
(1)求该物流公司每天从甲地到乙地平均可配送的货物量;
(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每
趟最多只能装载40 件货物,满载发车,否则不发车。若发车,则每辆车每趟可获利1000 元;若未发车,
则每辆车每天平均亏损200 元。为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货
车?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: , ,…, ,得到如图所示的频率分布直方图.
(1)求图中实数的值;
(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;
(3)若从数学成绩在与两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com