精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=cos4x﹣sin4x.下列结论正确的是(
A.函数f(x)在区间[0, ]上是减函数
B.函数f(x)的图象关于原点对称
C.f(x)的最小正周期为
D.f(x)的值域为[﹣ ]

【答案】A
【解析】解:由题意得,f(x)=cos4x﹣sin4x=cos2x﹣sin2x=cos2x,
A、由x∈[0, ]得2x∈[0,π],则f(x)在区间[0, ]上是减函数,A正确;
B、函数f(x)=cos2x是偶函数,图象关于y轴对称,B不正确;
C、函数f(x)=cos2x的最小正周期T= ,C不正确;
D、由﹣1≤cos2x≤1得,f(x)=cos2x的值域是[﹣1,1],D不正确,
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【广西南宁2017届高三检测】根据某电子商务平台的调查统计显示,参与调查的1000位上网购物者的年龄情况如图.

(1)已知三个年龄段的上网购物者人数成等差数列,求的值;

(2)该电子商务平台将年龄在之间的人群定义为高消费人群,其他的年龄段定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放80元的代金券,已经采用分层抽样的方式从参与调查的1000位上网购物者中抽取了10人,现在要在这10人中随机抽取3人进行回访,求此三人获得代金券总和的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3},集合B={x|a+1<x<6a﹣1},其中a∈R.
(1)写出集合A的所有真子集;
(2)若A∩B={3},求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面 平面,BC//平面PAD, ,.

求证:(1) 平面

(2)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某钢厂打算租用 两种型号的火车车皮运输900吨钢材, 两种车皮的载货量分别为36吨和60吨,租金分别为1.6万元/个和2.4万元/个,钢厂要求租车皮总数不超过21个,且型车皮不多于型车皮7个,分别用 表示租用 两种车皮的个数.

(Ⅰ)用 列出满足条件的数学关系式,并画出相应的平面区域;

(Ⅱ)分别租用 两种车皮的个数是多少时,才能使得租金最少?并求出此最小租金.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C经过点,且圆心在直线上,又直线与圆C交于P,Q两点.

1)求圆C的方程;

2)若,求实数的值;

(3)过点作直线,且交圆CM,N两点,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在矩形ABCD中,边AB、AD的长分别为2,1,若M,N分别是边BC、CD上的点,且满足 = =λ.

(1)当λ= 时,求向量 夹角的余弦值;
(2)求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据统计,某物流公司每天的业务中,从甲地到乙地的可配送的货物量的频率分布直方图,如图所示,将频率视为概率,回答以下问题.

(1)求该物流公司每天从甲地到乙地平均可配送的货物量;

(2)该物流公司拟购置货车专门运营从甲地到乙地的货物,一辆货车每天只能运营一趟,每辆车每

趟最多只能装载40 件货物,满载发车,否则不发车。若发车,则每辆车每趟可获利1000 元;若未发车,

则每辆车每天平均亏损200 元。为使该物流公司此项业务的营业利润最大,该物流公司应该购置几辆货

车?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高一年级学生中随机抽取40名中学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段: ,…, ,得到如图所示的频率分布直方图.

(1)求图中实数的值;

(2)若该校高一年级共有640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;

(3)若从数学成绩在两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.

查看答案和解析>>

同步练习册答案