精英家教网 > 高中数学 > 题目详情

如图所示,已知空间四边形ABCD的每条边和对角线长都等于1,点E,F,G分别是AB,AD,CD的中点,计算:

(1)·.
(2)EG的长.
(3)异面直线EG与AC所成角的大小.

(1)   (2)    (3) 45°

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(理)已知直三棱柱中,是棱的中点.如图所示.
 
(1)求证:平面
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面ABCD是平行四边形,,设中点,点在线段上且

(1)求证:平面
(2)设二面角的大小为,若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正方形ABCD的边长为2,AC∩BD=O.将正方形ABCD沿对角线BD折起,使AC=a,得到三棱锥A-BCD,如图所示.

(1)当a=2时,求证:AO⊥平面BCD.
(2)当二面角A-BD-C的大小为120°时,求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图几何体中,四边形为矩形,的中点,为线段上的一点,且.

(1)证明:
(2)证明:面
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图(1),四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将图(1)沿直线BD折起,使得二面角A­BD­C为60°,如图(2).

(1)求证:AE⊥平面BDC;
(2)求直线AC与平面ABD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是边长为1的菱形,底面的中点,的中点,,如图建立空间直角坐标系.

(1)求出平面的一个法向量并证明平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥PABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中点.
 
(1)求证:平面EAC⊥平面PBC
(2)若二面角PACE的余弦值为,求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面平面是等腰直角三角形,,四边形是直角梯形,∥AE,,分别为的中点.

(1)求异面直线所成角的大小;
(2)求直线和平面所成角的正弦值.

查看答案和解析>>

同步练习册答案