精英家教网 > 高中数学 > 题目详情
17.设变量x,y满足约束条件$\left\{\begin{array}{l}{2-y≥0}\\{x-3y+2≤0}\\{4x-5y+2≥0}\end{array}\right.$,则目标函数z=x-2y的最大值为0.

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{2-y≥0}\\{x-3y+2≤0}\\{4x-5y+2≥0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-3y+2=0}\\{y=2}\end{array}\right.$,解得A(4,2),
化目标函数z=x-2y为y=$\frac{1}{2}x-\frac{z}{2}$,
由图可知,当直线y=$\frac{1}{2}x-\frac{z}{2}$过A时,直线在y轴上的截距最小,z有最大值为0.
故答案为:0.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=Asin(ωx+$\frac{π}{3}$)(A>0,ω>0)最大值为2,周期为π.
(1)求实数A,ω的值;
(2)当x∈[0,$\frac{π}{2}$]时,求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)=|sinx|+|cosx|,x∈R,则下列结论正确的是①②(写出所有正确结论的编号).
①f(x)为偶函数    
②f(x)的最大值为$\sqrt{2}$    
③f(x)的最小值为0
④f($\frac{9π}{10}$)>f($\frac{π}{9}$)    
⑤f(x)的最小正周期为π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知△ABC是边长为1的等边三角形,点D,E分别是边AB,BC的中点,连接DE并延长到点F,使得DE=$\frac{1}{3}$EF,则$\overrightarrow{AF}$•$\overrightarrow{BC}$的值为(  )
A.$\frac{3}{4}$B.$\frac{1}{8}$C.-$\frac{5}{8}$D.$\frac{11}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=1,且($\sqrt{3}$$\overrightarrow{a}$+$\overrightarrow{b}$)$•\overrightarrow{b}$=-2,则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=(  )
A.-$\frac{\sqrt{6}}{3}$B.-$\frac{1}{3}$C.-$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.三个数a=0.65,b=50.6,c=log0.65,则a,b,c的大小关系为(  )
A.a<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若全集U=R,函数y=$\sqrt{x-2}$+$\sqrt{x+1}$的定义域为A,函数y=log2(-2x2+5x+3)的定义域为B.
(1)求集合(∁UA)∩(∁UB);
(2)设函数g(x)=$\sqrt{-{x}^{2}+(a-1)x+a}$的定义域为集合C,若B∩C=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-2|-|2x|+3.
(1)解不等式f(x)≥0;
(2)若对任意实数x,都有f(x)≥a-3|x|,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在直三棱柱ABC-A1B1C1 中,∠ACB=90°,AA1=2,AC=BC=1,记A 1B1 的中点为E,平面C1 EC  与 AB1 C1 的交线为l,则直线l与 AC所成角的余弦值是(  )
A.$\frac{{\sqrt{6}}}{5}$B.$\frac{{\sqrt{6}}}{4}$C.$\frac{{\sqrt{6}}}{6}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

同步练习册答案